Solving practical problems in physics (electricity and magnetism) using computer algebra systems

Josef Böhm (Austrian Center for Didactics of Computer Algebra, Austria)
Leon Magiera (Wroclaw University of Technology, Poland)

Technology and its Integration in Mathematics Education
Universidad Nacional Autónoma de México
June 29th to July $2^{\text {nd }}, 2016$. Mexico City, Mexico

Abstract

Several years ago Leon Magiera produced a very extended paper "DERIVE for Physics" treating problems from electric and magnetic fields using the at this times available and widely used CAS DERIVE. Josef Boehm translated the paper and added CAS-parts using TI-Voyage and the first versions of TI-Nspire. The German and English book were ready to be printed and published. (This was 2006 / 2007). Then DERIVE was taken off the market and the publisher ended his business ... End of the story? No!

Just recently Leon sent a new paper to Josef. He does not want to leave his paper hidden in his room. He rewrote the paper based on the free CAS wxMaxima and offered Josef to set his "Maxima for Physics" anywhere in the Internet for free download. His paper from 2006 was extended and the earlier chapters about problems from Electric Fields and Magnetic Fields are now accompanied by chapters "Circuits" and " Mechanics of a Charge in Electric and Magnetic Fields".

Josef added solving the problems not only using Maxima, but also TI-NspireCAS and sometimes good old DERIVE focussing on the advantages and disadvantages of the various software tools. So he changed the title to a more general "CAS" for Physics Problems.

We will present a selection of examples from all four fields covered in the papers.
email address of the authors:
nojo.boehm@pgv.at
leon.magiera@.wp.pl

This was the cover of the German version in 2006.

Derive ${ }^{\circledR}$ für Physik 1

Elektrizität und Magnetismus

Leon Magiera
übersetzt und bearbeitet von Josef Böhm
bk teachware Schriftenreihe Nr .

The new version comprises four parts and an introduction, Electrostatics, Magnetism, Circuits and Mechanics of Charged Particles.

I - Josef - am no physicist. So my part was to cope with CAS-questions, comparisons between various computer algebra systems, pose "silly questions" and to bring the whole paper into a common format.

Introduction

- This presentation is devoted to solving practical problems in the field of electricity and magnetism using computer algebra systems (Maxima (maxima.sourceforge.net), TI-Nspire, DERIVE).
- The selected problems usually appear in standard general physics courses at university level (science and engineering); some are also suitable for high schools.
- Each section begins with the formulation of a physical problem and then the reader is lead through a detailed, step by step, description of its solution with the use of the computer algebra system.

Example 1: Electric Field

II. 6 There are five charges $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ and Q_{0} located as shown in Fig. IL6.

Fig. II. 6
a) Find the relation between charges $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ for which the resulting acting on the charge Q_{0} disappears?
b) Plot the equipotential curves and the 3D-plot of the potential.

One of the solutions, namely: $Q_{1}=Q_{2}=Q_{3}=Q_{4}$ (full symmetry) is obvious. We try to find the remaining solutions:

```
(%i1) R_:matrix([a,a,0],[-a,a,0],[-a,-a,0],[a,-a,0])/2$
    assume (a>0)$
    r_:[x,y,z]$ Q_: [Q1,Q2,Q3,Q4]$
```

The potential of the electric field at point r resulting from the charges Q_{i} placed at R_{i} is given by

$$
\Phi_{j}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{j}}{\left|\vec{r}-\vec{R}_{j}\right|}
$$

```
(%i5) Phi:1/(4*%pi*eps0)*
    sum(Q_[j]/sqrt((r_-R_[j]).(r_-R_[j])),j,1,4)$
```

We apply the relationship between potential and field strength:

```
(%i6) load(vect)$ E_:-grad(Phi)$
(%i8) E_:ev(express(E_),diff)$
    E\mp@subsup{\overline{0}}{_}{\prime}:ev(E_,x=0,y=0,z=0)$
(%i10) E0x:factor(E0_[1]);E0y:factor(E0_[2]);E0z:factor(E0_[3]);
(8010) - - Q4-Q3-Q2+Q1
(8011)}\frac{Q4+Q3-Q2-Q1}{\mp@subsup{2}{}{3/2}\Pi\mp@subsup{a}{}{2}\mathrm{ epsO}
    (8012) 0
```

The electric field vector disappears in the desired point if every its component is zero. This implies that we have to solve two equations. We try to solve this equation system e.g. for the unknowns Q_{1} and Q_{2}.

```
(&i13) solve([E0x,E0y],[Q1,Q2]);
(%०13) [[21=Q3, Q2=Q4]]
```

From the received solution we can conclude that the resultant power acting on charge Q_{0} disappears when conditions $Q_{1}=Q_{3}$ and $Q_{2}=Q_{4}$ are fulfilled.

Of course, if every component of any vector is equal zero then its value (length of the vector) is equal to zero. We are getting the task to the solution of only one equation

$$
(\vec{E} \vec{E})_{\bar{r}=[0,0,0]}=0
$$

We try to solve this equation for one unknown e.g. for Q_{1} :

```
(%i14) solve(E0_.E0_,Q1); solve(E0_.E0_,Q2);
(%014) [Q1=-%i Q4+Q3+%i Q2,Q1=%i Q4+Q3-%i Q2]
    (8015) [ Q2=Q4-%i Q3+%i Q1, Q2=Q4+%i Q3-%i Q1]
```

As charges are real we deduce from \%o14 that $Q_{1}=Q_{3}$ and further $Q_{2}=Q_{4}$.
Of course, the same relations between charges are being received by solving the equation with respect to any other charge e.g. Q_{2} (see above \%o15).

We can obtain the solution of the problem in a single step applying the solve command:

```
(8i16) solve(E0_,[Q1,Q2]);
solve: dependent equations eliminated: (3)
    (8०16) [[ Q1=Q3, Q2=Q4]]
```

Now we substitute appropriate data and plot the potential:

The equipotential curves in the $x y$-plane are plotted:

```
(%i26) draw3d(title="Contours of the Potential",
    explicit(Phiz0,x,-1,1,y, -1, 1),
    contour_levels = 25,
    contour = map,
    surface_hide = true);
```


These are the respective DERIVE Plots:

TI-Nspire does not enable plotting the contour lines.
We introduce sliders for the $x y$-plane for visualizing the contour lines:

It is interesting that the old handheld Voyage 200 enables even plotting the contour lines - not in best quality, but it works:

I transfer the equation of the potential to GeoGebra and plot the surface together with contour lines:
(\%i27) Phiz0:ev(Phi,z=0);
(Phiz0) $\frac{1}{\sqrt{\left(y+\frac{1}{2}\right)^{2}+\left(x+\frac{1}{2}\right)^{2}}}-\frac{1}{\sqrt{\left(y+\frac{1}{2}\right)^{2}+\left(x-\frac{1}{2}\right)^{2}}}-\frac{1}{\sqrt{\left(y-\frac{1}{2}\right)^{2}+\left(x+\frac{1}{2}\right)^{2}}}+\frac{1}{\sqrt{\left(y-\frac{1}{2}\right)^{2}+\left(x-\frac{1}{2}\right)^{2}}}$

Example 2: Electric Field

A cylindrical dielectric layer characterized by two radii R_{1}, R_{2} and height H is uniformly charged with a charge Q. Find the vector of the electric field
a) on the axis of symmetry,
b) in the centre of the base circle (see Figure).

The resultant vector of the electric field is of the form

$$
\vec{E}=\frac{\rho}{4 \pi \varepsilon_{0}} \int_{0}^{H} \int_{0}^{2 \pi} \int_{R_{1}}^{R_{2}} \frac{\vec{r}}{|\vec{r}|^{3}} R d R d \varphi d z .\left(\varepsilon_{0}=\text { permittivity in vacuum }\right)
$$

My point of interest was how the systems will treat the triple integral.
We perform the integration and plot the $3^{\text {rd }}$ coordinate of the strength versus z_{0} :

```
(%i6) fv:r_/sqrt(r_.r_)^3*R$
(%i7) E_:rho/(4*%pi*eps0)*
    integrate(
        integrate(
            integrate(trigsimp(fv),R,R1,R2),
            phi,0,2*%pi),
    z,0,H);
Is z0 zero or nonzero?p;
    (%०7) [0,0,\frac{Q(\sqrt{}{R\mp@subsup{2}{}{2}+\mp@subsup{H}{}{2}-2zOH+z\mp@subsup{O}{}{2}}-\sqrt{}{R\mp@subsup{2}{}{2}+z\mp@subsup{O}{}{2}}-\sqrt{}{R\mp@subsup{1}{}{2}+\mp@subsup{H}{}{2}-2zOH+z\mp@subsup{O}{}{2}}+\sqrt{}{R\mp@subsup{1}{}{2}+z\mp@subsup{O}{}{2}})}{2\pi\mathrm{ EPSOH(R2'-R12})}
```


We treat the problem with TI-NspireCAS:

Sliders improve the presentation:

The Analyse-Tool supports finding the position for the maximum strength.

Example 3: Magnetic Field

A uniform rod of length l and mass m is placed on two parallel, horizontal rails. These rails are connected to a source of constant potential difference U and placed in a constant magnetic field of strength B. This magnetic field is perpendicular to the plane containing the rails. The coefficient of friction between the rod and the rails equals μ.
a) What is the velocity of the rod at time t ?
b) Assuming that the rails are infinitely long, calculate the maximum velocity of the rod.

The motion of the rod is determined by a force \vec{F} which is the resultant of two forces: the electromagnetic force $\overrightarrow{F_{e l}}$ and the force of friction $\overrightarrow{F_{f}}$.

$$
F=F_{e l}-F_{f} \text { where } F_{e l}=B I l \text { and } F_{f}=\mu G=\mu \mathrm{mg}
$$

Motion of the rod causes a change in the flux of the magnetic field Φ and an electromotive force is induced

$$
E=-\frac{d \Phi}{d t}, \text { where } \Phi=B S=B l x(t)
$$

The current flowing in the circuit is given according to Ohm's law by

$$
I=\frac{U+E}{R}
$$

Now we can enter all above given relations

```
(%i7) \Phi(t):=B*l*x(t)$ E(t):=-diff(\Phi(t),t)$
    I(t):=(U+E(t))/R$ F[el](t):=B*I(t)*1$
    F[f]: 苂GS G:m*g$ F(t):=F[el](t)-F[f]$
```

and we apply Newton's $2^{\text {nd }}$ law (Force $=$ Mass times Acceleration $)$:

$$
\begin{aligned}
& \text { (oi8) } \quad \text { eq: } m * \operatorname{diff}(x(t), t, 2)=F(t) ; \\
& \text { (eq) } \quad m\left(\frac{d^{2}}{d t^{2}} x(t)\right)=\frac{1 B\left(U-1\left(\frac{d}{d t} x(t)\right) B\right)}{R}-G \mu
\end{aligned}
$$

Two ways of calculating the requested velocity of the rod i.e. the unknown function $x^{\prime}(t)$ are presented below.

Method 1: We separate the variables in equation (eq) and integrate wrt t.

$$
\begin{aligned}
& \text { (\%i9) eq/rhs (eq) ; } \\
& (\% \circ 9) \frac{m\left(\frac{d^{2}}{d t^{2}} x(t)\right)}{1 B\left(U-1\left(\frac{d}{d t} x(t)\right) B\right)} \frac{R}{\frac{1}{8}(G \mu}=1 \\
& \text { (\%i10) integrate (\%,t) ; } \\
& (\% \circ 10)-\frac{m R \log \left(\frac{1 B\left(U-I\left(\frac{d}{d t} x(t)\right) B\right)}{R}-G \mu\right)}{l^{2} B^{2}}=t+\% c 1
\end{aligned}
$$

Then we solve the resulting equation for $x^{\prime}(t)$...

```
(%i11) gsoln:solve(%,diff(x(t),t));
```

(gsoln) $\left[\frac{d}{d t} x(t)=-\frac{G R \mu-1 B U+R \& e^{-\frac{1^{2} t B^{2}}{m R}-\frac{s c 11^{2} B^{2}}{m R}}}{I^{2} B^{2}}\right]$
... and extract the right hand side which represents the velocity.

```
(%i12) v(t):=rhs(gsoln[1])$
(%i13) v(t);
(%013) - - GR\mu-IBU+R&\mp@subsup{e}{}{-\frac{\mp@subsup{L}{}{2}t\mp@subsup{B}{}{2}}{mR}-\frac{&c1\mp@subsup{I}{}{2}\mp@subsup{B}{}{2}}{mR}}
```

When time tends to infinite we get maximal velocity. This fact can formally be confirmed by calculation of the limit of the velocity.

```
(%i14) solve(diff(v(t),t)=0,t);
(%०14) []
(%i16) assume (l>0,m>0,R>0) $
        limit(v(t),t,inf);
Is B zero or nonzero?n;
    (%O16) - GR\mu-IBU
```

I'd like to give an additional graphic confirmation by entering numerical data and then plotting the velocity function:

```
(%i24) G:5$ R:20$ \mu:0.03$
    B:1$ U:2$ l:10$ m:1$ %c1:0$
(%i25) ev(%०16);
(%०25) 0.17
```

Let's plot the velocity function:

```
(%i26) ev(%०13);
(%026) - -\frac{208\mp@subsup{e}{}{-5t}-17.0}{100}
(%i28) plot2d(-(20*%e^(-5*t)-17)/100,[t,0,2]);
```


Method 2: We choose applying function ode2.
We enter equation (eq) from above directly and solve the differential equation.

```
(%i2) de:m*(diff(v(t),t))=(l*B*(U-l*v(t)*B))/R-\mu*G;
(de) m(\frac{d}{dt}v(t))=\frac{IB(U-Iv(t)B)}{R}-G\mu
(%i3) gsoln:ode2(de,v(t),t) $
(%i4) v(t):=rhs(gsoln)$
(%i5) v(t);
(%O5) %e -\frac{\mp@subsup{I}{}{2}t\mp@subsup{B}{}{2}}{mR}}(%C-\frac{8\mp@subsup{e}{}{\frac{\mp@subsup{I}{}{2}t\mp@subsup{B}{}{2}}{mR}}}{m
(%i6) limit(%o5,t,inf);
Is l zero or nonzero?n;
    Is m positive or negative?p;
    Is B zero or nonzero?n;
    Is R positive or negative?p;
    (%०6) -
```

It is charming to compare solving the ODE applying DERIVE and TI-NspireCAS as well.
In DERIVE we make use of built-in $\operatorname{DSOLVE1}(\mathrm{p}, \mathrm{q}, \mathrm{t}, \mathrm{y}, \mathrm{t} 0, \mathrm{v} 0)$ after rewriting the equation in the form $p(t, v)+q(t, v) \cdot v^{\prime}=0, v\left(\mathrm{t}_{0}\right)=v_{0}$.
\#1: CaseMode := Sensitive
\#2:

$$
\left.v_{-}(t):=\left(\operatorname{SOLUTIONS}\left(\operatorname{DSOLVE} 1-\frac{1 \cdot B \cdot(U-1 \cdot v \cdot B)}{R}+\mu \cdot G, m, t, v, 0,0\right), v\right)\right)
$$

$$
v_{-}(t):=\frac{e^{-B^{2} \cdot 1^{2} \cdot t /(R \cdot m)} \cdot(G \cdot R \cdot \mu-B \cdot U \cdot 1)}{B^{2} \cdot 1^{2}}+\frac{B \cdot U \cdot 1-G \cdot R \cdot \mu}{B^{2} \cdot 1^{2}}
$$

\#3:
\#4: $\quad[R: \in \operatorname{Rea} 1(0, \infty), m: \in \operatorname{Rea} 1(0, \infty)]$
\#5: $\left\lvert\, \lim _{t \rightarrow \infty} v_{-}(t)=\frac{B \cdot U \cdot 1-G \cdot R \cdot \mu}{\mathrm{~B}^{2} \cdot 1^{2}}\right.$

TI-NspireCAS makes entering the equation easier but here it is not possible to find the limit for t tending to infinity. But we can see this by inspecting the exponential expression, of course!

This is the limit.

Example 4: Circuits - Resistances

Find the total resistance for the circuit presented in the figure.

Give the numerical result for the total resistance for $R_{1}=2 \Omega, R_{2}=3 \Omega, R_{3}=2 \Omega, R_{4}=3 \Omega$, $R_{5}=2 \Omega, R_{6}=3 \Omega, R_{7}=2 \Omega, R_{8}=2 \Omega$ and $R_{9}=2 \Omega$.

We "simplify" the circuit by manipulating the resistors.
Note that Resistors R_{5}, R_{6} and R_{7} are connected in series. Therefore the above circuit can be replaced by a simpler form (see below).

where $R_{\mathrm{A}}=R_{5}+R_{6}+R_{7}$.
Resistors R_{A} and R_{4} are parallel connected. Hence the next simplification is shown:

$$
\text { where } \frac{1}{R_{\mathrm{B}}}=\frac{1}{R_{4}}+\frac{1}{R_{\mathrm{A}}} \text {. }
$$

As the resistors R_{3}, R_{B} and R_{8} are series connected we then have:

$$
\text { with } R_{\mathrm{C}}=R_{3}+R_{\mathrm{B}}+R_{8} .
$$

Resistors R_{2} and R_{C} are parallel connected.

$$
\text { where } \frac{1}{R_{\mathrm{D}}}=\frac{1}{R_{2}}+\frac{1}{R_{\mathrm{C}}} .
$$

Finally total resistance R_{T} can calculated according the formula

$$
R_{\mathrm{T}}=R_{1}+R_{\mathrm{D}}+R_{9} .
$$

Let us solve the above equation system.

```
(%i5) eq1:R[A]=R[5]+R[6]+R[7];
        eq2:1/R[B]=1/R[4]+1/R[A];
    eq3:R[C]=R[3]+R[B]+R[8];
    eq4:1/R[D]=1/R[2]+1/R[C];
        eq5:R[T]=R[1]+R[D]+R[9];
(eq1) }\quad\mp@subsup{R}{A}{}=\mp@subsup{R}{7}{}+\mp@subsup{R}{6}{}+\mp@subsup{R}{5}{
    (eq2) }\quad\frac{1}{\mp@subsup{R}{B}{}}=\frac{1}{\mp@subsup{R}{A}{}}+\frac{1}{\mp@subsup{R}{4}{}
    (eq3) }\quad\mp@subsup{R}{C}{}=\mp@subsup{R}{B}{}+\mp@subsup{R}{8}{}+\mp@subsup{R}{3}{
    (eq4) }\frac{1}{\mp@subsup{R}{D}{}}=\frac{1}{\mp@subsup{R}{C}{}}+\frac{1}{\mp@subsup{R}{2}{}
    (eq5) }\quad\mp@subsup{R}{T}{}=\mp@subsup{R}{D}{}+\mp@subsup{R}{9}{}+\mp@subsup{R}{1}{
(%i7) eqs:[eq1,eq2,eq3, eq4,eq5]$
    sol:solve(eliminate(eqs,[R[A],R[B],R[C],R[D]]),R[T])[1];
(sol) }\quad\mp@subsup{R}{T}{}=
(( }\mp@subsup{R}{7}{}+\mp@subsup{R}{6}{}+\mp@subsup{R}{5}{}+\mp@subsup{R}{4}{})\mp@subsup{R}{8}{}+(\mp@subsup{R}{4}{}+\mp@subsup{R}{3}{}+\mp@subsup{R}{2}{})\mp@subsup{R}{7}{}+(\mp@subsup{R}{4}{}+\mp@subsup{R}{3}{}+\mp@subsup{R}{2}{})\mp@subsup{R}{6}{}+(\mp@subsup{R}{4}{}+\mp@subsup{R}{3}{}+\mp@subsup{R}{2}{})\mp@subsup{R}{5}{}+(\mp@subsup{R}{3}{}+\mp@subsup{R}{2}{})\mp@subsup{R}{4}{})\mp@subsup{R}{9}{}
```



```
(( R2}+\mp@subsup{R}{1}{})\mp@subsup{R}{4}{}+(\mp@subsup{R}{2}{}+\mp@subsup{R}{1}{})\mp@subsup{R}{3}{}+\mp@subsup{R}{1}{}\mp@subsup{R}{2}{\prime})\mp@subsup{R}{6}{}+((\mp@subsup{R}{2}{}+\mp@subsup{R}{1}{})\mp@subsup{R}{4}{}+(\mp@subsup{R}{2}{}+\mp@subsup{R}{1}{})\mp@subsup{R}{3}{}+\mp@subsup{R}{1}{}\mp@subsup{R}{2}{})\mp@subsup{R}{5}{}+((\mp@subsup{R}{2}{}+\mp@subsup{R}{1}{})\mp@subsup{R}{3}{}+\mp@subsup{R}{1}{}\mp@subsup{R}{2}{}
R4})/((\mp@subsup{R}{7}{}+\mp@subsup{R}{6}{}+\mp@subsup{R}{5}{}+\mp@subsup{R}{4}{})\mp@subsup{R}{8}{}+(\mp@subsup{R}{4}{}+\mp@subsup{R}{3}{}+\mp@subsup{R}{2}{})\mp@subsup{R}{7}{}+(\mp@subsup{R}{4}{}+\mp@subsup{R}{3}{}+\mp@subsup{R}{2}{})\mp@subsup{R}{6}{}+(\mp@subsup{R}{4}{}+\mp@subsup{R}{3}{}+\mp@subsup{R}{2}{})\mp@subsup{R}{5}{}+(\mp@subsup{R}{3}{}+\mp@subsup{R}{2}{})\mp@subsup{R}{4}{}
```

Notice the eliminate in \%i17. Only R_{T} is of interest for us.
The solution of the system is quite bulky!! Finally it is easy to carry out the calculation for the given numerical data and find the resulting total resistance:

```
(%i9) data:[R[1]=2,R[2]=3,R[3]=2,R[4]=3,R[5]=2,
    R[6]=3,R[7]=2,R[8]=2,R[9]=2]$
    subst(data,sol);
(%०9)
    R
(%i10) float(%);
(%०10) }\quad\mp@subsup{R}{T}{}=6.01098901098901
```

With DERIVE we can do in the same way, however we miss the "eliminate" command. So we receive the bulky solution containing all variables (see next page).

We could also work stepwise without displaying the intermediate results:
\#1: [CaseMode := Sensitive, InputMode := Word]
\#2: \quad RA : $=\mathrm{R} 5+\mathrm{R} 6+\mathrm{R} 7$
\#3: $\quad \mathrm{RB}:=\left(\operatorname{SOLUTIONS}\left(\frac{1}{\mathrm{RB}}=\frac{1}{\mathrm{R} 4}+\frac{1}{\mathrm{RA}}, \mathrm{RB}\right)\right)_{1}$
\#4: $\quad \mathrm{RC}:=\mathrm{R} 3+\mathrm{RB}+\mathrm{R} 8$
\#5: RD := $\left(\operatorname{SOLUTIONS}\left(\frac{1}{\mathrm{RD}}=\frac{1}{\mathrm{R} 2}+\frac{1}{\mathrm{RC}}, \mathrm{RD}\right)\right)$
\#6: $\quad \mathrm{RT}=\mathrm{R} 1+\mathrm{RD}+\mathrm{R9}$
\#7: \quad RT $=$ R1 -

$$
\frac{\mathrm{R3}^{2} \cdot(R 4+R 5+R 6+R 7)^{2}+2 \cdot R 3 \cdot(R 4+R 5+R 6+R 7) \cdot(R 4 \cdot(R 5+R 6+R 7+R 8)+R 8 \cdot(R 5 \sim}{\sim} \sim
$$

$$
\frac{+R 6+R 7))+R 4^{2} \cdot(R 5+R 6+R 7+R 8)^{2}+2 \cdot R 4 \cdot R 8 \cdot(R 5+R 6+R 7) \cdot(R 5+R 6+R 7+R 8) \sim}{\sim} \sim
$$

$$
+\mathrm{R}^{2} \cdot(\mathrm{R} 5+\mathrm{R} 6+\mathrm{R} 7)^{2}+
$$

$$
R 3 \cdot(R 4+R 5+R 6+R 7)+R 4 \cdot(R 5+R 6+R 7+R 8+R 9)+(R 5+R 6+R 7) \cdot(R 8+R 9)
$$

$$
R 4+R 5+R 6+R 7
$$

\#8: \quad RT $=\frac{547}{91}$
\#9: \quad RT $=6.01098901$

Finally we substitute the given resistances.

$$
\begin{aligned}
& \text { \#6: } \quad\left[R A=R 5+R 6+R 7 \wedge R B=\frac{R 4 \cdot(R 5+R 6+R 7)}{R 4+R 5+R 6+R 7} \wedge R C=\frac{R 3 \cdot(R 4+R 5+R 6+R 7)+R 4 \cdot(R 5+R 6+R 7+R 8)+R 8 \cdot}{R 4+R 5+R 6+R 7}\right. \\
& \frac{R 2 \cdot(R 3 \cdot(R 4+R 5+R 6+R 7)+R 4 \cdot(R 5+R 6+R 7+R 8)+R 8 \cdot(R 5+R 6+R 7))}{R 2 \cdot(R 4+R 5+R 6+R 7)+R 3 \cdot(R 4+R 5+R 6+R 7)+R 4 \cdot(R 5+R 6+R 7+R 8)+R 8 \cdot(R 5+R 6+R 7)} \wedge R T= \\
& R 1 \cdot(R 2 \cdot(R 4+R 5+R 6+R 7)+R 3 \cdot(R 4+R 5+R 6+R 7)+R 4 \cdot(R 5+R 6+R 7+R 8)+R 8 \cdot(R 5+R 6+R 7))+R 2 \cdot(\\
& R 2 \cdot(R 4+R 5+R 6+F \\
& +R 8+R 9)+(R 5+R 6+R 7) \cdot(R 8+R 9))+R 9 \cdot(R 3 \cdot(R 4+R 5+R 6+R 7)+R 4 \cdot(R 5+R 6+R 7+R 8)+R 8 \cdot(R 5+ \\
& +R 7+R 8)+R 8 \cdot(R 5+R 6+R 7) \\
& \text { \#7: }\left[R A=7 \wedge R B=\frac{21}{10} \wedge R C=\frac{61}{10} \wedge R D=\frac{183}{91} \wedge R T=\frac{547}{91}\right] \\
& \text { \#8: } \quad|[\mid R A=7 \wedge R B=2.1 \wedge R C=6.1 \wedge R D=2.01098901 \wedge R T=6.01098901]|
\end{aligned}
$$

If we enter the designations together with an equals-sign then we can see the intermediate results, too.
\#2: RA := R5 + R6 + R7
\#3: $\left(\mathrm{RB}:=\left(\operatorname{SOLUTIONS}\left(\frac{1}{\mathrm{RB}}=\frac{1}{\mathrm{R} 4}+\frac{1}{\mathrm{RA}}, \mathrm{RB}\right)\right)_{1}\right)=\mathrm{RB}:=\frac{\mathrm{R} 4 \cdot(\mathrm{R} 5+\mathrm{R} 6+\mathrm{R} 7)}{\mathrm{R} 4+\mathrm{R} 5+\mathrm{R} 6+\mathrm{R} 7}$
\#4: $\quad(R C:=R 3+R B+R 8)=R C:=R 3-\frac{R^{2}+2 \cdot R 5 \cdot(R 6+R 7)+R 6^{2}+2 \cdot R 6 \cdot R 7+R 7{ }^{2}}{R 4+R 5+R 6+R 7}+R 5+R 6$

+ R7 + R8

Below you can see the same procedure carried out with TI-NspireCAS.

$$
\begin{aligned}
& \mathbf{r a}:=r 5+r 6+r 7 \cdot r 5+r 6+r 7 \\
& \mathbf{r b}:=\operatorname{right}\left(\operatorname{solve}\left(\frac{1}{\mathbf{r b}}=\frac{1}{r 4}+\frac{1}{\mathbf{r a}}, \mathbf{r b}\right)\right) \cdot \frac{r^{4} \cdot\left(r 5+r 6+r^{7}\right)}{r^{4}+r^{5} 5+r^{6} 6+r^{7}} \\
& \mathbf{r c}:=r 3+\mathbf{r b}+r 8 \cdot r 3-\frac{(r 5+r 6+r 7)^{2}}{r 4+r 5+r 6+r 7}+r 5+r 6+r 7+r 8! \\
& \mathbf{r d}:=\operatorname{right}\left(\operatorname{solve}\left(\frac{1}{\mathbf{r d}}=\frac{1}{r^{2}}+\frac{1}{\mathbf{r c}}, \mathbf{r d}\right)\right) \\
& \frac{r 2 \cdot(r 3 \cdot(r 4+r 5+r 6+r 7)+r 4 \cdot(r 5+r 6+r 7+r 8)+(r 5+r 6+r 7) \cdot r 8)}{r 2 \cdot(r 4+r 5+r 6+r 7)+r 3 \cdot(r 4+r 5+r 6+r 7)+r 4 \cdot(r 5+r 6+r 7+r 8)+(r 5+r 6+r 7) \cdot r 8} \Omega \\
& \mathbf{r t}:=r 1+\mathbf{r d}+r 9 \\
& r 1 \\
& \text { - } \\
& -\frac{(r 3 \cdot(r 4+r 5+r 6+r 7)+r 4 \cdot(r 5+r 6+r 7+r 8)+(r 5+r 6+r 7) \cdot r 8)^{2}}{(r 2 \cdot(r 4+r 5+r 6+r 7)+r 3 \cdot(r 4+r 5+r 6+r 7)+r 4 \cdot(r 5+r 6+r 7+r 8)+(r 5+r 6+r 7) \cdot r 8) \cdot(r 4+r 5+r 6+r 7)} \\
& +\frac{r 3 \cdot(r 4+r \cdot 5+r 6+r 7)+r 4 \cdot(r \cdot 5+r 6+r 7+r 8+r 9)+(r \cdot 5+r 6+r 7) \cdot(r 8+r 9)}{r 4+r 5+r 6+r 7} \triangleq \\
& \mathbf{r t} \mid r 1=2 \text { and } r 2=3 \text { and } r 3=2 \text { and } r 4=3 \text { and } r 5=2 \text { and } r 6=3 \text { and } r 7=2 \text { and } r 8=2 \text { and } r 9=2 \\
& \text { - } 6.01099
\end{aligned}
$$

Example 5: Circuits - Resistances and Maximum Current

We have three identical cells with an electromotive force of E and an internal resistance of r. How should these cells be connected to each other to serve as battery, in order to give the maximum current across an external resistance of R ?

I choose this example because it demonstrates the way to treat inequalities.

It is sufficient to consider and to compare the four configurations of connecting the cells to a circuit as illustrated in figures $\mathrm{a}-\mathrm{d}$.
a

c

d

The other possible ways of connecting the cells involve different polarization of the cells, and are thus less favourable.

Using Kirchhoff's laws we get the following equations for the four circuits:
(a)

$$
E=I_{a}\left(R+\frac{1}{\frac{1}{r}+\frac{1}{r}+\frac{1}{r}}\right)=I_{a}\left(R+\frac{r}{3}\right)
$$

(b)

$$
\left\{\begin{array}{l}
2 E=I_{1}(r+r)+I_{b} R \\
E=\left(I_{b}-I_{1}\right) r+I_{b} R
\end{array}\right.
$$

(c)

$$
\left\{\begin{array}{l}
2 E=I_{1} r+I_{c} r+I_{c} R \\
2 E=\left(I_{c}-I_{1}\right) r+I_{c} r+I_{c} R
\end{array}\right.
$$

(d)

$$
3 E=I_{d}(3 r+R)
$$

We enter the equations or the systems of equations and then solve them for the currents I_{a} to I_{d}.
To continue the comparison procedure of the currents we assign variable names to each of the solutions from above:

```
(%i14) I[a]:(3*E)/(3*R+r)$
    I[b]:(4*E)/(3*R+2*r)$
    I[c]:(4*E)/(2*R+3*r)$
    I[d]: (3*E)/(R+3*r) $
```

We introduce a positive parameter ε defining the ratio of the resistances $\frac{R}{r}$ to make the comparison of the currents easier.

```
(%i15) R:\varepsilon*r$
```

Circuit (a) is the most favourable if the following inequalities hold:

$$
I_{a}>I_{b}, I_{a}>I_{c}, I_{a}>I_{d} \text { i.e. } \frac{I_{a}}{I_{b}}>1, \frac{I_{a}}{I_{c}}>1, \frac{I_{a}}{I_{d}}>1
$$

We solve the system of inequalities given above (loading a special package "to_poly_solve" first).

```
(%i16) load(to_poly_solve) $
(%i17) %solve(ev([I[a]/I[b]>1,I[a]/I[c]>1,I[a]/I[d]>1, \varepsilon>0]), ह);
to_poly_solve: to_poly_solver.mac is obsolete; I'm loading to_poly_solve.mac instead.
(%०17) %union }([0<\varepsilon,\varepsilon<\frac{2}{3}]
```

From \%017 we can conclude that circuit (a) is the most favourable for a ratio of resistances in the range $0<\varepsilon<\frac{2}{3}$ or $0<\frac{R}{r}<\frac{2}{3}$ or $R>\frac{2 r}{3}$.

The approach for the remaining cases is similar:

```
same for circuit (b)
(%i18) %solve(ev([I[b]/I[a]>1,I[b]/I[c]>1,I[b]/I[d]>1, \varepsilon>0]), \varepsilon);
(%o18) %union }[[\frac{2}{3}<\varepsilon,\varepsilon<1]
    same for circuit (c)
(%i19) %solve(ev([I[c]/I[a]>1,I[c]/I[b]>1,I[c]/I[d]>1, \varepsilon>0]), \varepsilon);
(%019) sunion}([1<\varepsilon,\varepsilon<\frac{3}{2}]
    and finally for circuit (d)
(%i20) %solve(ev([I[d]/I[a]>1,I[d]/I[b]>1,I[d]/I[c]>1, \varepsilon>0]), \varepsilon);
(%०20) sunion }[\frac{3}{2}<\varepsilon]
```

Circuit (b) is the best in the range $\frac{2}{3}<\frac{R}{r}<1$ or $\frac{2 r}{3}<R<r$,
Circuit (c) is the best for $1<\frac{R}{r}<\frac{3}{2}$ or $r<R<\frac{3 r}{2}$ and circuit (d) is the best for $\frac{R}{r}>\frac{3}{2}$ or $R>\frac{3 r}{2}$.
As can easily be seen all intervals are open. We will check now how the circuits behave when the ratio of the resistances is at one of the boundaries of these intervals? What do you expect?

I will skip this here.

We might ask ourselves how DERIVE and/or TI-NspireCAS will perform solving the system of inequalities? We enter the definitions of the currents $(R=r r)$ and make the try:

$i a:=\frac{3 \cdot e}{3 \cdot r r+r}: i b:=\frac{4 \cdot e}{3 \cdot r r+2 \cdot r}: i c:=\frac{4 \cdot e}{2 \cdot r r+3 \cdot r}: i d:=\frac{3 \cdot e}{r r+3 \cdot r}$
$r r:=\varepsilon \cdot r$
(1) solve $\left.\left(\frac{i a}{i b}>1\right.$ and $\frac{i a}{i c}>1$ and $\left.\frac{i a}{i d}>1, \varepsilon\right) \right\rvert\, \varepsilon>0$
solve $\left(\frac{i b}{i a}>1\right.$ and $\frac{i b}{i c}>1$ and $\left.\frac{i b}{i d}>1, \varepsilon\right)$
solve $\left(\frac{i c}{i a}>1\right.$ and $\frac{i c}{i b}>1$ and $\left.\frac{i c}{i d}>1, \varepsilon\right)$
solve $\left(\frac{i d}{i a}>1\right.$ and $\frac{i d}{i b}>1$ and $\left.\frac{i d}{i c}>1, \varepsilon\right)$
solve $\left(\frac{i a}{i b}>1\right.$ and $\frac{i a}{i c}>1$ and $\left.\frac{i a}{i d}>1, \varepsilon\right)$

As we can see there is no problem and we don't need any special package or library. The CASmachine of TI-NspireCAS is - more or less - based on the DERIVE core, so we can be quite sure that DERIVE doesn't have any problems, too.

Entering the inequalities and output of the result are very clear.

We will enter the world of differential equations - this is where physics really starts ...

Example 6: Circuits - R-L-Circuit

Given is a R-L circuit consisting of time dependent electromotive force of the form $V(t)=V_{0} \cos (\omega t)$, a resistor R and an inductor L , connected in series.
a) Calculate the charge $Q(t)$ and the current $I(t)$ when $Q(0)=Q_{0}$ and $I(0)=0$
b) Plot the graphs of $Q(t)$ and $I(t)$ for $Q_{0}=V_{0}=R=\omega=1, L=2$.

We have to solve the following differential equation: $\quad L Q^{\prime \prime}(t)+R Q(t)=V_{0} \cos (\omega t)$.

```
(%i1) de:'L**diff(Q(t),t,2)+R*diff(Q(t),t)=V[0]*\operatorname{cos}(\omega*t);
(de) (\frac{d}{dt}Q(t))R+(\frac{\mp@subsup{d}{}{2}}{d\mp@subsup{t}{}{2}}Q(t))L=\mp@subsup{V}{0}{}\operatorname{cos}(t\omega)
(%i2) Qsoln:ode2(de,Q(t),t);
Is R zero or nonzero?n;
```

$$
\begin{aligned}
& -->\quad Q(t):=\left(V[0] * R * \sin (t * \omega)-V[0] * L^{*} \omega * \cos (t * \omega)\right) / \\
& \left(L^{\wedge} 2^{*} \omega^{\wedge} 3+R^{\wedge} 2 * \omega\right)+\% k 2 * \% e^{\wedge}(-(t * R) / L)+\frac{\%}{*} 1 \$
\end{aligned}
$$

It remains to calculate the two constants of integration.

```
(%i5) eq1:Q(0)=Q[0]$
    eq2:subst(t=0,\operatorname{diff}(Q(t),t))=0$
(%i6) solve([eq1,eq2],[%k1,%%2]);
(%06) [[%k1=\mp@subsup{Q}{0}{},%k2=\frac{\mp@subsup{V}{0}{}L}{\mp@subsup{L}{}{2}\mp@subsup{\omega}{}{2}+\mp@subsup{R}{}{2}}]]
(%i7) [%k1:Q[0],%k2:(V[0]*L)/(L^2* 生^2+R^2)]$
```

Now we can define charge $Q(t)$ and $I(t)$ as the derivative of the charge:

```
(%i8) Q(t);
(%O8)
    \frac{\mp@subsup{V}{0}{}R\operatorname{sin}(t\omega)-\mp@subsup{V}{0}{}L\omega\operatorname{cos}(t\omega)}{\mp@subsup{L}{}{2}\mp@subsup{\omega}{}{3}+\mp@subsup{R}{}{2}\omega}+\frac{\mp@subsup{V}{0}{}L&\mp@subsup{e}{}{-\frac{tR}{L}}}{\mp@subsup{L}{}{2}\mp@subsup{\omega}{}{2}+\mp@subsup{R}{}{2}}+\mp@subsup{Q}{0}{}
(%i9) I(t):= diff(Q(t),t)$
(%i10) I(t);
(%010) }\frac{\mp@subsup{V}{0}{}L\mp@subsup{\omega}{}{2}\operatorname{sin}(t\omega)+\mp@subsup{V}{0}{}R\omega\operatorname{cos}(t\omega)}{\mp@subsup{L}{}{2}\mp@subsup{\omega}{}{3}+\mp@subsup{R}{}{2}\omega}-\frac{\mp@subsup{V}{0}{}R&\mp@subsup{e}{}{-\frac{tR}{L}}}{\mp@subsup{L}{}{2}\mp@subsup{\omega}{}{2}+\mp@subsup{R}{}{2}
```

We calculate charge and current for the given data

```
(%i11) example:subst([Q[0]=1,V[0]=1,R=1,L=2,\omega=1],[Q(t),I(t)]);
(example) [ 纹(t)-2\operatorname{cos}(t)
```

Finally we prepare for plotting and then we plot the requested functions:

```
(%i13) Q1(t):=(sin(t) -2*\operatorname{cos}(t))/5+(2*%\mp@subsup{e}{}{\wedge}(-t/2))/5+1S
    I1(t):=(2*}\operatorname{sin}(t)+\operatorname{cos}(t))/5-\frac{%}{8}\mp@subsup{e}{}{\wedge}(-t/2)/5
--> plot2d([Q1(t),I1(t)],[t,0,20],[y,-1,2],
        [legend, "Charge", "Current"]);
```


Let's try Michel Beaudin's toolbox (see References). There is also a function provided for treating an R-L-circuit:

kit_ets_mb\|cir_rl($1,2, \cos (t), 0)$	$\frac{-e^{\frac{-t}{2}}}{5}+\frac{\cos (t)}{5}+\frac{2 \cdot \sin (t)}{5}$
$\operatorname{current}(t):=\frac{-e^{\frac{-t}{2}}}{5}+\frac{\cos (t)}{5}+\frac{2 \cdot \sin (t)}{5}$	Done
$q(t):=\int$ current $(t) \mathrm{d} t+c$	Done
$q(0)=1$	$c=1$
charge $(t):=q(t) \mid c=1$	Done
charge(t)	$\frac{2 \cdot e^{\frac{-t}{2}}}{5}-\frac{2 \cdot \cos (t)}{5}+\frac{\sin (t)}{5}+1$
T	

The plot looks the same as with wxMaxima.

Example 7: Electric Charge in Magnetic Field

Calculate the trajectory of a particle of mass m and electrical charge q moving in a constant magnetic field \vec{B}.
At time $t=0$ position and velocity of the particle are: $\vec{r}_{0}=(0,0,0)$ and $\vec{v}_{0}=\left(v_{0 x}, 0, v_{0 z}\right)$.

Let us assume the co-ordinate system oriented as given in the figure below.

Using such a co-ordinate system we can write the field components as follows:

$$
B_{x}=0, B_{y}=0, B_{z}=B
$$

For the components of the initial velocity we have:

$$
v_{0 x}=v_{0} \sin (\alpha), v_{0 y}=0, v_{0 z}=v_{0} \cos (\alpha)
$$

We enter the definitions of position and velocity vector and of both field vectors.

```
(%i7) r_(t):=[x(t),y(t),z(t)]$
    v\overline{x}(t):='\operatorname{diff}(x(t),t)$ vy(t):='\operatorname{diff}(y(t),t)$
    vz(t):='diff(z(t),z)$
    v_(t):=[vx(t),vy(t),vz(t)]$
    E_: [0,0,0]$ B_: [0,0,B]$
```

We need the library vector for applying Newton's equation $\ddot{\vec{r}}=\frac{q}{m}(\vec{v} \times \vec{B})$:

```
(%i7) r_(t):=[x(t),y(t),z(t)]$
    vx(t):='diff(x(t),t)$ vy(t):='diff(y(t),t)$
    vz(t):='diff(z(t),z)$
    v_(t):=[vx(t),vy(t),vz(t)]$
    E_-:[0,0,0]$ B_: [0,0,B]$
(%i8) load(vect)$
(%i9) de_:'diff(r_(t),t,2)=q*E_/m+q/m*express(v_(t) ~B_);
(de_) }\frac{\mp@subsup{d}{}{2}}{d\mp@subsup{t}{}{2}}[x(t),Y(t),z(t)]=[\frac{Bq(\frac{d}{dt}y(t))}{m},-\frac{Bq(\frac{d}{dt}x(t))}{m},0
(%i10) de_:subst(B=\omega*m/q,de_);
(de_)}\frac{\mp@subsup{d}{}{2}}{d\mp@subsup{t}{}{2}}[x(t),y(t),z(t)]=[(\frac{d}{dt}y(t))\omega,-(\frac{d}{dt}x(t))\omega,0
```

We substitute $\omega=\frac{B \cdot q}{m}$ to get more comfortable expressions and then extract differential Equations for all components.

We extract differential equations for all Cartesian components:

```
(%i11) dex2:'diff(x(t),t,2)=rhs(de_)[1];
(dex2) }\frac{\mp@subsup{d}{}{2}}{d\mp@subsup{t}{}{2}}\textrm{x}(t)=(\frac{d}{dt}y(t))
(%i12) dey2:'diff(y(t),t,2)=rhs(de_)[2];
(dey2) }\frac{\mp@subsup{d}{}{2}}{d\mp@subsup{t}{}{2}}y(t)=-(\frac{d}{dt}x(t))
(%i13) dez2:'diff(z(t),t,2)=rhs(de_)[3];
(dez2) }\frac{\mp@subsup{d}{}{2}}{d\mp@subsup{t}{}{2}}z(t)=
```


Method 1:

By integration: Solution of DE dez2 is trivial:

$$
z(t=0)=0 \text { and } \dot{z}(t=0)=v 0 z \text { give } \% c 2=0, \% c 1=v_{0} \cos (\alpha) \rightarrow z(t)=t \cdot v_{0} \cos (\alpha)
$$

We proceed with calculating $x(t)$ and $y(t)$.
In the first step we integrate one of the two equations dex2 or dey2, let's take the second one. Taking into account the initial condition $\dot{y}(0)=0$, it can easily be seen that constant $\% c 3$ in $\% 016$ is equal zero. Therefore \%016 can be written in simpler form \%o17.

```
(%i14) integrate(dez2,t);
(%०14) }\frac{d}{dt}z(t)=%c
(%i15) integrate(%,t);
(%o15) }\quadz(t)=%c1t+%c
(%i16) integrate(dey2,t);
(%०16) }\frac{d}{dt}y(t)=8c3-x(t)
(%i17) 'diff(y(t),t)=-\omega*x(t)$
```

In the next step we insert the above derivative into equation dex2.

```
(%i18) subst('diff(y(t),t,1)=-x(t)*\omega, dex2);
(%०18) }\frac{\mp@subsup{d}{}{2}}{d\mp@subsup{t}{}{2}}x(t)=-x(t)\mp@subsup{\omega}{}{2
```

It is interesting that ode 2 does not return the correct solution, so I try desolve - and it works

```
(%i19) desolve('diff(x(t),t,2)=-omega^2*x(t),x(t));
Is }\omega\mathrm{ zero or nonzero?n;
    (%019) x(t)= \frac{\operatorname{sin}(\omegat)(\frac{d}{dt}x(t)\mp@subsup{|}{t=0}{})}{\omega}+x(0)\operatorname{cos}(\omegat)
```

We can substitute $x^{\prime}(0)$ and $x(0)$ by copy and past in \%o18 or we apply subst:

```
(%i20) subst([x(0)=0,at('diff(x(t),t,1),t=0)=v[0]*sin(\alpha)],%);
(%०20) }\textrm{x}(t)=\frac{\mp@subsup{v}{0}{}\operatorname{sin}(\omegat)\operatorname{sin}(\alpha)}{\omega
```

Our next step is inserting the obtained function $x(t)$ in expression \%i17 followed by integrating to get function $y(t)$:

```
(%i21) subst(x(t)=(v[0]*\operatorname{sin}(\mp@subsup{\omega}{}{*}t)*\operatorname{sin}(\alpha))/
    \omega,'\operatorname{diff}(y(t),t,1)=-\omega*x(t));
(%o21) }\frac{d}{dt}y(t)=-\mp@subsup{v}{0}{}\operatorname{sin}(\alpha)\operatorname{sin}(t\omega
(%i22) integrate(%,t);
(%०22) y(t)= }\frac{\mp@subsup{v}{0}{}\operatorname{sin}(\alpha)\operatorname{cos}(t\omega)}{\omega}+%c
```

In the final step we apply initial condition $y(0)=0$ to find constant $\% c 4$. Then it's easy to get the simplified result for $y(t)$.

```
(%i23) solve(subst(t=0,(v[0]*\operatorname{cos}(\mp@subsup{\omega}{}{*}t)*\operatorname{sin}(\alpha)*\omega)/\mp@subsup{\omega}{}{\wedge}2+%c4=0),%c4);
(%०23) [%c4 =- [ vosin(\alpha)
(%i24) y (t)=(v[0]*\operatorname{cos}(\mp@subsup{\omega}{}{*}t)*\operatorname{sin}(\alpha)*\omega)/\mp@subsup{\omega}{}{\wedge}2-(v[0]*\operatorname{sin}(\alpha))/\omega;
(%०24) y(t)= \frac{\mp@subsup{v}{0}{}\operatorname{sin}(\alpha)\operatorname{cos}(t\omega)}{\omega}-\frac{\mp@subsup{v}{0}{}\operatorname{sin}(\alpha)}{\omega}
(%i25) ratsimp(%);
```


Method 2:

Using complex variables:
The system of equations [dex2, dey2] can be solved in an elegant way by introducing a new complex variable

$$
\eta(t)=x(t)+i \cdot y(t) \text { where } i \text { denotes the imaginary unit. }
$$

We start adding dex2 and $\% \mathbf{i} \cdot$ dey2. Then we rewrite the resulting equation in form of a single equation for the complex function $\eta(t)$.

```
(%i26) B:\omega*m/q$
(%i27) dex2+%i*dey2;
(%027) %i (\frac{\mp@subsup{d}{}{2}}{d\mp@subsup{t}{}{2}}y(t))+\frac{\mp@subsup{d}{}{2}}{d\mp@subsup{t}{}{2}}x(t)=(\frac{d}{dt}y(t))\omega-%i}(\frac{d}{dt}x(t))
(%i28) diff(n(t),t,2)=-%i*\omega*diff(eta(t),t);
(%०28)}\frac{\mp@subsup{d}{}{2}}{d\mp@subsup{t}{}{2}}\eta(t)=-%i(\frac{d}{dt}\eta(t))
```

At first we perform the integration:
(\%i29) integrate (\%,t);
(\%०29) $\frac{d}{d t} \eta(t)=\% c 5-\% i \eta(t) \omega$
Taking into account the initial conditions

$$
x(0)=0, y(0)=0, \dot{x}(0)=v_{0} \sin (\alpha), \dot{y}(0)=0
$$

we get

$$
\dot{\eta}(0)=\dot{x}(0)+i \dot{y}(0)=v_{0} \sin (\alpha)
$$

and equation \%029 can be written as

$$
\begin{aligned}
& (\% i 30) \quad \text { diff }(\eta(t), t)=v[0] * \sin (\alpha)-\% i *\left(q^{*} \eta(t) * B\right) / m \\
& (\% 030) \\
& \quad \frac{d}{d t} \eta(t)=v_{0} \sin (\alpha)-\% i \eta(t) \omega
\end{aligned}
$$

We apply ode 2 - which can be applied for $1^{\text {st }}$ order DEs, too - and define $\eta(t)$.

$$
\begin{aligned}
& \text { (\%i31) ode2 (\%, n (t), t); } \\
& \text { (\%०31) } \eta(t)=\frac{\%}{8} e^{-\frac{8 i}{8} \omega}\left(\% c-\frac{8 i v_{0} \sin (\alpha) 8 e^{8 i t \omega}}{\omega}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (\%०32) } \eta(t):=\% e\left(-\frac{\%}{\%}\right) t \omega\left(\% c-\frac{8 i v_{0} \sin (\alpha) \delta e^{\frac{\delta i t \omega}{}}}{\omega}\right)
\end{aligned}
$$

Considering the initial condition delivers constant \%c.

```
(%i33) solve(n(0)=0,%c);
(%०33) [%c= %iv\mp@subsup{v}{0}{}\operatorname{sin}(\alpha)
(%i34) \eta(t):=% &^((-%i)*t*\omega)*
    ((%i*v[0]*sin(\alpha))/\omega-(%i*v[0]*sin(\alpha)*%e^(%i*t*\omega))/\omega);
(%034) \eta(t):=%e}(-\frac{%}{8})t\omega(\frac{8i\mp@subsup{v}{0}{}\operatorname{sin}(\alpha)}{\omega}-\frac{8i\mp@subsup{v}{0}{}\operatorname{sin}(\alpha)%\mp@subsup{e}{}{\frac{git}{}|}}{\omega}
(%i35) ratsimp(%);
```



```
(%i36) \eta_(t):=expand(n(t));
(%०36) }\eta(t):= expand(\eta(t)
(%i37) x(t)=realpart(n_(t));
(%037) }\textrm{x}(t)=\frac{\mp@subsup{v}{0}{}\operatorname{sin}(\alpha)\operatorname{sin}(t\omega)}{\omega
(%i38) y(t)=imagpart(\eta_(t));
                                    Same result as above!
(%०38) y(t)=\frac{\mp@subsup{v}{0}{}\operatorname{sin}(\alpha)\operatorname{cos}(t\omega)}{\omega}-\frac{\mp@subsup{v}{0}{}\operatorname{sin}(\alpha)}{\omega}
```

It remains to extract real and imaginary part in order to obtain requested functions $x(t)$ and $y(t)$.

Method 3: Using desolve.

```
(%i39) gsoln:desolve([dex2,dey2,dez2],[x(t),y(t),z(t)])$
Is \omega zero or nonzero?n;
(%i40) psoln:subst ([x(0)=0,y(0)=0,z(0)=0,
                                    at('diff(x(t),t),t=0)=v[0]*sin(\alpha),
                                    at('diff(y(t),t),t=0)=0,
                                    at('diff(z(t),t),t=0)=v[0]*\operatorname{cos}(\alpha)],gsoln);
(psoln) [x(t)=\frac{\mp@subsup{v}{0}{}\operatorname{sin}(\alpha)\operatorname{sin}(t\omega)}{\omega},\textrm{y}(t)=\frac{\mp@subsup{v}{0}{}\operatorname{sin}(\alpha)\operatorname{cos}(t\omega)}{\omega}-\frac{\mp@subsup{v}{0}{}\operatorname{sin}(\alpha)}{\omega},\textrm{z}(t)=\mp@subsup{v}{0}{}t\operatorname{cos}(\alpha)]
(%i42) x(t):=rhs(psoln[1])$ x(t);
(%०42) }\frac{\mp@subsup{v}{0}{}\operatorname{sin}(\alpha)\operatorname{sin}(t\omega)}{\omega
(%i44) y(t):=expand(rhs(psoln[2]))$ y(t);
(%044) }\frac{\mp@subsup{v}{0}{}\operatorname{sin}(\alpha)\operatorname{cos}(t\omega)}{\omega}-\frac{\mp@subsup{v}{0}{}\operatorname{sin}(\alpha)}{\omega
(%i46) z(t):=expand(rhs(psoln[3]))$ z(t);
(%o46) votcos(\alpha)
```

Comparing the results we fortunately can observe that they are the same.

Finally we will substitute back for $\omega=\frac{B \cdot q}{m}$.

(\%i47) kill(B) \$

(\%i49) $x_{-}(t):=\operatorname{subst}\left(\omega=B^{*} q / m, x(t)\right) \$ x_{-}(t)$;
$(\% \circ 49) \frac{v_{0} m \sin \left(\frac{B q}{m}\right) \sin (\alpha)}{B q}$
(\%i51) $\quad y_{-}(t):=\operatorname{subst}\left(\omega=B^{*} q / m, y(t)\right) \$ y_{-}(t)$;
(\%०51) $\frac{v_{0} m \cos \left(\frac{B q t}{m}\right) \sin (\alpha)}{B q}-\frac{v_{0} m \sin (\alpha)}{B q}$

Now having done all the work we would like to see the trajectory of the particle for one data set:

```
(%i52) subst([v[0]=5,\alpha=%pi/3,B=3,m=2,q=1],[x_(t),y_(t),z(t)]);
(%०52) [ [\frac{5\operatorname{sin}(\frac{3t}{2})}{\sqrt{}{3}},\frac{5\operatorname{cos}(\frac{3t}{2})}{\sqrt{}{3}}-\frac{5}{\sqrt{}{3}},\frac{5t}{2}]
(%i53) spiral:parametric((5*sin((3*t)/2))/sqrt(3),
                                    (5*\operatorname{cos}((3*t)/2))/sqrt (3) -5/sqrt (3),
                                    (5*t)/2,t,0,3*%pi);
(spiral) parametric}(\frac{5\operatorname{sin}(\frac{3t}{2})}{\sqrt{}{3}},\frac{5\operatorname{cos}(\frac{3t}{2})}{\sqrt{}{3}}-\frac{5}{\sqrt{}{3}},\frac{5t}{2},t,0,3\pi
```


Graphs of some other trajectories:

Example 8: Challenge provided by Michel Beaudin

(This ione of Michel's assessment problems given at ETS Montreal)

Recall: the ODE for a mass-spring problem is

$$
m y^{\prime \prime}+b y^{\prime}+k y=f(t), \quad y(0)=y_{0}, \quad y^{\prime}(0)=v_{0}
$$

where $y(t)$ denotes the position of the object at time t, m is the mass of the object, b is the damping constant, k is the spring constant and $f(t)$ is the external force (could be 0) and where the initial position and initial velociy are respectiveley y_{0} and v_{0}.

Problem 1: consider the (undamped) mass-spring problem with 2 impulses acting as external force :

$$
y^{\prime \prime}+4 y=50 \delta(t-\pi)-100 \delta(t-2 \pi), \quad y(0)=10, \quad y^{\prime}(0)=5 .
$$

a) Solve the ODE and plot the graph of the position in the window

$$
0<t<10 \pi,-30<y<30
$$

b) For $t>2 \pi$, show that the solution can be written as $A \cos (\omega t+\varphi)$.

I must admit, it is a shame but I never had to cope with Laplace transforms, Dirac Delta functions, ... So I was busy informing myself. It was a steep learning curve but finally I was successful. See first how I did with wxMaxima. Then I will present Michel's solution.

I perform the Laplace transformation applied on the given differential equation:

```
(%i1) laplace(diff(y(t),t,2)+4*y(t)=
50*delta(t-%pi)-100*delta(t-2*%pi),t,s);
(%o1) - - d}\textrm{d}t\textrm{y}(t)\mp@subsup{|}{t=0}{}+\mp@subsup{s}{}{2}l\operatorname{laplace}(\textrm{y}(t),t,s)+4 laplace (y(t),t,s)-y(0)s=50%\mp@subsup{e}{}{-\pi}
-100%\mp@subsup{e}{}{-2\pis}
(%i2) eq_L:subst([-(at('diff(y(t),t,1),t=0)=5),
            y(0)=10,laplace (y(t),t,s)=Y],%o1);
(eq_L) Y s}\mp@subsup{}{}{2}-10s+4Y-5=50%\mp@subsup{e}{}{-\pis}-100%\mp@subsup{e}{}{-2\pis
(%i3) solve(eq_L,Y);
(%०3) [Y = % 
```

I separate the rational expression and apply the inverse Laplace transform, giving \%o7.

```
(%i4) nom:expand(%e^(-2*%pi*s)* ((10*s+5)*%e^(2*%pi*s)
    +50*%e^(%pi*s)-100));
(nom) 50% % - < s}-100%\mp@subsup{e}{}{-2\pis}+10s+
(%i5) ilt((10*s+5)/(s^2+4),s,t);
(%०5)}\frac{5\operatorname{sin}(2t)}{2}+10\operatorname{cos}(2t
```

I treat the remaining two fractions according to the rules giving products including the stepfunction.

```
(%i6) unit_step(t-%pi)*ilt(50/(s^2+4),s,t-%pi)+
    unit_step(t-2*%pi)*ilt(-100/(s^2+4),s,t-2*%pi);
(%06) 25 unit_step(t-\pi) sin(2(t-\pi))-50unit_step(t-2\pi)\operatorname{sin}(2(t-2\pi))
```

Finally I tried to automate this process, transforming back expressions generated by the δ-function in the given DE.

```
(%i7) invl(a_,f,s,t):=trigsimp(unit_step(t-a_)*ilt(f,s,t-a_))$
(%i8) invl(%pi,50/(s^2+4),s,t)+invl(2*%pi,-100/(s^2+4),s,t);
(%08) 25 sin(2t)unit_step(t-\pi)-50 sin(2t)unit_step(t-2\pi)
(%i9) ms(t):=(5*\operatorname{sin}(2*t))/2+10*\operatorname{cos}(2*t)+
        25*unit_step(t-%pi)*sin(2*(t-%pi)) -
        50*unit_step(t-2*%pi)*sin}(2*(t-2*%pi))
(%i10) plot2d(ms(t),[t,0,10*%pi]);
```

This is the plot:
Michel's TI-NspireCAS solution is given below.

The students are permitted to apply functions provided in the ETS-library like ressort().

Problem 1: the ODE is $y^{\prime \prime}+4 y=50 \cdot \delta(t-\pi)-100 \cdot \delta(t-2 \pi), y(0)=10, y(0)=5$.

The solution is:
kit_ets_mb ressort $(1,0,4,50 \cdot \delta(t-\pi)-100 \cdot \delta(t-2 \cdot \pi), 10,5)$
$\left.\cdot 10 \cdot \cos (2 \cdot t) \cdot u(t)+\sin (2 \cdot t) \cdot\left(25 \cdot u(t-\pi)-50 \cdot u(t-2 \cdot \pi)+\frac{5 \cdot u(t)}{2}\right) \right\rvert\,$
Now, in order to plot this, we need to "inform" Nspire about $u(t)$. It is the Heaviside (unit-step) function that is programmed into the ets_specfunc library BUT not taken in charge by Nspire CAS alone... But the signum function is implemented into Nspire CAS. So let's define
$\mathbf{u u}(t):=\frac{1+\operatorname{sign}(t)}{2}$. Done
And let's change " u " for " $u u$ " in the answer, change " t " for " x " and plot the graph, using the indicated window.
$\mathbf{f 1}(x):=10 \cdot \cos (2 \cdot x) \cdot \mathbf{u u}(x)+\sin (2 \cdot x) \cdot\left(25 \cdot \mathbf{u u}(x-\pi)-50 \cdot \mathbf{u u}(x-2 \cdot \pi)+\frac{5 \cdot \mathbf{u u}(x)}{2}\right) \cdot$ Done
See page 2 where the effect of each impulse is clear on the graph.

Now, when $t>2 \pi, \mathbf{f l}(t)$ will simplify:

In his solutions is the oscillation function expressed as piecewise defined function. Can we achieve this with Maxima, too?

La fonction «ressort» donne ce résultat immédiatement :
kit_ets_mblressort $(1,0,4,50 \cdot \delta(t-\pi)-100 \cdot \delta(t-2 \cdot \pi), 10,5)$

$$
10 \cdot \cos (2 \cdot t) \cdot u(t)+\sin (2 \cdot t) \cdot\left(25 \cdot u(t-\pi)-50 \cdot u(t-2 \cdot \pi)+\frac{5 \cdot u(t)}{2}\right)
$$

Remarquez qu'on peut remettre cette réponse en «morceaux » :

$$
y(t)= \begin{cases}10 \cos (2 t)+\frac{5}{2} \sin (2 t), & 0 \leq t<\pi \\ 10 \cos (2 t)+\frac{55}{2} \sin (2 t), & \pi \leq t<2 \pi \\ 10 \cos (2 t)-\frac{45}{2} \sin (2 t), & t \geq 2 \pi\end{cases}
$$

The function which converts the Heaviside functions into a piecewise defined function was provided by Frederick Henri (ETS Montreal) and is also part of the TI-Nspire library.

Back to the above question:
Yes we can express the answer as a piecewise defined function with wxMaxima:

```
(%i12) assume(t<%pi)$ ms(t);
(%०12) }\frac{5\operatorname{sin}(2t)}{2}+10\operatorname{cos}(2t
(%i15) forget(t<%pi)$ assume(t>%pi and t<2*%pi)$
    trigsimp(ms(t));
(%015) }\frac{55\operatorname{sin}(2t)+20\operatorname{cos}(2t)}{2
(%i18) forget(t>%pi and t<2*%pi)$ assume(t>2*%pi)$
    trigsimp(ms(t));
(%018) - 45\operatorname{sin}(2t)-20\operatorname{cos}(2t)
(%i19) forget(t>2*%pi)$
```

Notice the nice "forget"-function!
Now we can build the solution function in the requested form and then plot its graph again.

```
(%i22) f1(t):=(5*\operatorname{sin}(2*t))/2+10*\operatorname{cos}(2*t) $
    f2(t):=(55*sin(2*t) +20* cos(2*t))/2$
    f3(t):=-(45*\operatorname{sin}(2*t)-20*\operatorname{cos}(2*t))/2$
(%i23) ms2(t):=if t<%pi then f1(t) else
    if t<2*%pi then f2(t) else f3(t)$
(%i25) plot2d(ms2(t),[t,0,10*%pi]);
```


Question b) needs some competence in trig manipulations supported by the CAS:

$$
\begin{aligned}
& \text { f1 }(t) \left\lvert\, t>2 \cdot \pi \cdot 10 \cdot \cos (2 \cdot t)-\frac{45 \cdot \sin (2 \cdot t)}{2}\right. \\
& \text { And } \\
& \text { tCollect }\left(10 \cdot \cos (2 \cdot t)-\frac{45 \cdot \sin (2 \cdot t)}{2}\right) \cdot \frac{-5 \cdot \sqrt{97} \cdot \sin \left(2 \cdot t-\tan ^{-1}\left(\frac{4}{9}\right)\right)}{2} \\
& \text { this is the same as } \frac{5 \cdot \sqrt{97} \cdot \sin \left(2 \cdot t-\tan ^{-1}\left(\frac{4}{9}\right)+\pi\right)}{2} \cdot \frac{-5 \cdot \sqrt{97} \cdot \sin \left(2 \cdot t-\tan ^{-1}\left(\frac{4}{9}\right)\right)}{2} \\
& \text { And this is the same as } \\
& 5 \cdot \sqrt{97} \cdot \cos \left(2 \cdot t-\tan ^{-1}\left(\frac{4}{9}\right)+\pi-\frac{\pi}{2}\right) \\
& \frac{2}{2} \cdot \frac{-5 \cdot \sqrt{97} \cdot \sin \left(2 \cdot t-\tan ^{-1}\left(\frac{4}{9}\right)\right)}{2} \\
& \text { That is: } \frac{2}{2} \cdot \cos \left(2 \cdot t-\tan ^{-1}\left(\frac{4}{9}\right)+\pi-\frac{\pi}{2}\right) \\
& \pi
\end{aligned}
$$

As this conference series was started in 1992 as a DERIVE conference I'd like to finish with the DERIVE treatment of this challenge.

The Dirac- δ-function has not been implemented in DERIVE. 2006 - after ending the "official life" of DERIVE Albert Rich wrote:
The Dirac delta function can be defined as the derivative of the step function. But because of the nature of this discontinuous function, it would have to be primitively defined in Derive in order to have the desired properties.

Michel Beaudin offers a trick to implement the δ-function as a limit of the CHI-function. See how it works and how to solve the differential equation - due to the fact, that DERIVE is able to perform integration of the CHI-function (which is internally based on the SIGN-function).

```
\(\delta(\mathrm{a}):=\frac{1}{\mathrm{~b}} \cdot \chi(\mathrm{a}, \mathrm{t}, \mathrm{a}+\mathrm{b})\)
DSOLVE2_IV (0, 4, \(50 \cdot \delta(\pi)-100 \cdot \delta(2 \cdot \pi), ~ t, 0,10,5)\)
1 im DSOLVE2_IV \((0,4,50 \cdot \delta(\pi)-100 \cdot \delta(2 \cdot \pi), t, 0,10,5)\)
\(b \rightarrow+0\)
\(-25 \cdot \operatorname{SIGN}(t-2 \cdot \pi) \cdot \operatorname{SIN}(2 \cdot t)+\frac{25 \cdot \operatorname{SIGN}(t-\pi) \cdot \operatorname{SIN}(2 \cdot t)}{2}+10 \cdot \cos (2 \cdot t)-10 \cdot \operatorname{SIN}(2 \cdot t)\)
```

The solution is the red graph. The slider for b demonstrates the property of the δ-function.

My Conclusions

- Computer algebra systems significantly enhance the use of computers in teaching physics, far beyond simple 'number crunching'.
- Instead of spending time on algebraic manipulations with pen and paper, students (and practitioners alike) can tackle more challenging problems.
- With constant improvements and new developments in the area of CAS', their potential and impact on problem solving and teaching - not only in physics - will increase too.

You are invited to download the papers from http:///rdz.ph-noe.ac.at/acdca/materialien.html
Many thanks to Leon Magiera and Michel Beaudin for their patience and cooperation during preparing this lecture.

Thanks for your attention.

All files are available on request.

References:

Leon Magiera

