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Attracted by (STRANGE) Attractors 
An illustrated guided tour from well-known to unknown attractors 

 
Your Tour Guide: Josef Böhm 

 
Abstract 

 
When investigating dynamic systems, fractals and chaotic behavior it is inevitable to come 
across “attractors”. An attractor is a set towards which a dynamical system evolves over time. 
This can be one or more points, a curve, or a kind of fractal structure in the phase space. The 
latter are called “strange attractors”. Investigating these special sets opens a huge box of sur-
prising shapes which might form a linkage between mathematics and arts. 

We will use the excellent mathematical capabilities of DERIVE and TI-NspireCAS (and other 
tools) wrapped in programs to present well known and not so well-known attractors which 
can be found in “CHAOS-Literature”, as there are: Lorenz-, Hénon-, Rössler-, Ikeda-, 
Gumowski-Mira-attractors and others. 

 
This is a revised and extended summary of my presentation given at TIME 2012 in Tartu, Estonia, to-
gether with some additional notes. In particular, I added the treatment by TI-NspireCAS, too – as far as 
possible and last - but not least – the chapters on the fractal dimension. 
 
 
1 Introduction and well-known Basics 

The Strange Attractors can be counted to recreational mathematics and to creational mathematics as 
well. This field of mathematics offers an affective (emotional) approach to interesting insights rather 
than a cognitive (rational) one. There is also a lot of pure and hard mathematics behind all these nice 
patterns which I will present in the following. I served more than 30 years as school teacher and was 
always glad offering “pretty” mathematical objects to catch the interest of the students which were not 
so happy with the hard facts of mathematics. One can really see and experience the BEAUTY of math-
ematics approaching the secrets of STRANGE ATTRACTORS. 
 
An attractor is a set towards a dynamical system evolves over time. This can be  

o one or more points 

o a kind of fractal structure 

o a curve 

 
A key word for all what is following is ITERATION: 
 

Iteration of one variable:     1 0( ); givenn nx f x x    

Iteration of two (or more variables (dynamic system)):  1 1

1 2

( , )

( , )
n n n

n n n

x f x y

y f x y







; 0 0, givenx y   

 
The first example of a one variable iteration is the Logistic Parabola. Its iteration formula is given by 

1 (1 ).n n nx r x x      

 
The question is: What happens when plotting the graph of xn+1 versus xn? 

3 



 

 
First, we investigate how the sequence develops. We apply DERIVE’s versatile ITERATES-command 
and show the last k of the first n elements of the sequence. 
 

 
 
We observe the different behavior of the iteration process for different values for r. Let’s illustrate this 
quite better by plotting the graph of xn+1 versus xn producing a cobweb diagram: 
 

  
   

                                        r = 2.5                   r = 3.2 
 
 
 

  
                                            r = 3.5                                 r = 3.8 
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The figures given above illustrate the iteration process for different values for r plotting the cobweb 
diagrams. All iterations are starting with x0 = 0.3. We can observe one-, two-, four-point attractors, and 
chaotic behavior, respectively. The end behavior does not depend on the initial value. 

I present two ways to produce the logistic pa-
rabola together with the cobweb diagram and 
the straight line y= x. 

You can take a program. #11 gives the first 
figure. 

The purists among the DERIVIANs will miss 
the very special ITERATES-command for de-
scribing this iteration process. (Let’s remem-
ber the huge and impressive ITERATEs-con-
structs composed by Hannes Wiesenbauer!). 

 
In DNL#13 you can find a short note of Jerry Glynn providing a respective routine. Here is a similar 
one: 

 

We can observe one-, two- or four-point attractors, and chaotic behavior, respectively. 

TI-NspireCX CAS allows comfortable plotting without programming. We define the iteration in the 
sequence entry and install a slider for r. We set a point on the x-axis (green) and link its x-coordinate to 
a variable, say x0, which is used as initial value for the sequence. Then we can move the initial point 
and vary the r-value as well. 
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Two columns in the spreadsheet and their representation as a scatter diagram demonstrate the appear-
ance of the attractors in combination with the slider in another attractive way  

 

 

     

The so-called period doubling and its transition to chaos can be presented in another famous form. 

The key word is Bifurcation (Feigenbaum-diagram): 

We calculate for all values r with 1 < r < r_e with step size inc the first n elements of the iteration and 
we plot the last k values against r. So, we can observe the attractors. 

#20 generates the k points belonging to one given r and initial value x0 and #21 composes all vertical 
sets of points to the Feigenbaum diagram. The plot of #22 is presented on the next page. Calculation 
does not need too long time. You might find out how many points are plotted. 
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The endpoint behavior for r 2.5, 3.2 and 3.5 is marked in red, 
green and blue, respectively. Inspecting this scatter plot, we 
might get the impression that there appears at least one more pe-
riod doubling. Right of the blue line x = 3.5 we detect four “bub-
bles” lying in a vertical line. 

We zoom in and read off the x-coordinate of the cross  3.56. 

When we calculate the last 20 elements of the first 200 ones we 
really can confirm that there is a period of eight elements. 
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The question is: Can we produce the Feigenbaum diagram on the TI-NspireCAS screen, too. To answer 
with Barack Obama: “Yes, we can!”. 

 

Program feigb with the same syntax as DERIVE feigb generates lists rv (r-values) and se (sequence 

elements) which can be placed into the Scatter Plot Graph Entry. Gives a pretty plot! 
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Before proceeding to the next chapter, I would like to describe one more possibility visualizing the iter-
ation process together with the attractors. 

 

   

       r = 2.5, 1000 iterated points                   r = 3.2, 1000 points                        r = 3.5, 1000 points 
 
 
I plot the logistic parabola (red) and 
the first 1000 or 10 000 points  
(xi, xi+1) in blue (medium size). We 
see that all points are lying on the pa-
rabola. The attractor points are also in 
blue but in large size. There are no at-
tractors for r = 3.8. 

Once I forgot to deactivate the  
Points >Connect>No box and found 
the family of chords plotted. I wonder 
if there is an envelope of the chords – 
and how to find it. 

      r = 3.8, 10 000 points               200 points, Connected 
 
	
	
2 The Lyapunov-exponent 

As we are approaching chaos now we need a measure to test chaotic behavior. Chaotic processes are 
extremely sensitive to initial conditions. Reading this you might remember the famous “Butterfly Ef-
fect”. 

The general idea is to follow two nearby orbits and to calculate their average logarithmic rate of sepa-
ration. The Lyapunov exponent λ is the power of 2 by which the difference between two nearly equal 
x-values changes on average for each iteration i.e. the difference changes by an average of 2λ for each 
iteration. (This is a definition for a one-dimensional iteration. It is adapted in case of more dimensional 
systems.) 
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Start with any point on the attractor and choose a nearby point separated by d0. Iterate both values and 

find their distance d1. Now calculate 1
2

0

log .
d

d
 Readjust one orbit so its separation is d0 in the same di-

rection as d1 and repeat this procedure many times and then calculate the average of the logarithms [3]. 

 

If λ < 0 then the solutions approach another  we receive a point attractor  

but 

if λ > 0 then the process is sensitive to initial conditions  we can expect chaotic 

behavior  we receive a strange attractor. 

 
This is another interpretation: The Lyapunov-exponent λ (LE) is the rate at which information is lost 
when a map is iterated. 

In case of one dimensional iterations we can use means of calculus to find the LE. 

1
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Applying this formula on the logistic equation we receive: 
2

1

2
1

(1 ) ( )

( ) 2

1 log 2

i i i i ii

i i

N

i
i

x r x x r x r x f x

f x r r x

r r x
N







    

 

 

 

I wrote a short DERIVE program for testing the Lyapunov-exponent: 

 

Let us check the LEs of the logistic parabolas from above. 
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You can see that for r = 3.8 the LE turns out to 
be positive. 

cf are the coefficients of the parabola in as-
cending order, e.g. [0, 3.2, -3.2] for 3.2x·(1 – x) 
= 3.2x – 3.2x2. its is the number of iterations – 
which is N in the formulas given above. We will 
use this program for polynomials of higher or-
der, too.�

 
 

In [3] I found the graph of the LE depending on r for the logistic parabolas with 2  r  4. Applying the 

basics of the program from above we can produce this interesting graph using program lyape_f(iter-
ations, r_start, r_end, r_inc). 

 
lyape_f(1000,2.5,4,0.01) (red) and lyape_f(1000,3.5,4,0.005) (blue) 

The zeros of the graph indicate the position of the bifurcations. Zooming into the right upper corner 
shows the fractal structure of this graphic representation (lyape_f(1000,3.8,4,0.001) in green). 
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3 The first Investigation 



 

We will try to extend the logistic parabola to ordinary parabolas and further to parabolas (polynomials) 
of higher order. At the moment, we have the only chance to find quadratic parabolas with a positive LE 
by try and error: 

My first try: 

 

This was not very successful. We have a point attractor, which is not surprising because the LE is nega-
tive. Let’s try another one: 

 

The positive LE is promising. We plot xn+1 vs xn. 

 
It is boring and frustrating finding “attractive” parabolas and polynomials just by trying sets of coeffi-
cients. Very soon we will provide a tool for organizing this search which will guarantee success. 

How to obtain “attractive” polynomials of higher order? Once found a parabola like g(x) this is an easy 

job. We plot xn+k (k steps later iteration) versus xn with k  1. 

The next program gives this plot with lits = k with lits = 1 by default. 

 

The reason for entering the parabola (and later the polynomials) in form of a list of the coefficients - 
and not as an expression - will be explained in the next paragraph. 
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We will compare the first generated points changing the last parameter of this function from 1 (by de-
fault) to 2 and further to 3. 

   

         

Can you find respective points in this table and in the 
table above? 

We plot g(x) together with the first 1000 
points of xi+1 vs xi (red), xi+2 vs xi (blue), xi+3 
vs xi (green) and xi+4 vs xi (black) which is a 
polynomial of order 16. 

 

 

 

 

 

 

 

 

Plotting the points connected gives the family of 
chords and we again get the impression of a possi-
ble envelope. 
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Now let’s turn on the TI-NspireCAS again. Calculation of the Lyapunov exponent follows the DE-
RIVE program from above. VECTOR must be replaced by a sequence and – more important – we have 
the common for-next loop available. 

 

You will notice iterate for TI-NspireCAS. It is not implemented, so we define our own iterate-function 
and iterates as well. Michel Beaudin provides a more powerful iterate (and iterates as well) in his  
TI-Nspire toolbox but this one is sufficient enough for our purpose. 
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This is our iterate for TI-Nspire. (I put both function in a public library in order to have it available at 
any occasion.) 

  

You are invited to compare the plot of the Lyapunov-exponent function. 
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I produced a program polmap as a “translation” from DERIVE-syntax to TI-Nspire syntax. Here I 
show another way to plot the attractor, generating the whole sequence of iterations first followed by 
gathering the elements for the two lists which are needed for the scatter plot, compare with polmap 
from above. 
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4 Motivation and Inspiration as well 

My motivation and inspiration as well to deal with strange attractors was a book written by Julien C. 
Sprott: 

 
 

and his incredible search for strange attractors [3]. This book can be downloaded as a pdf-file free of 
charge together with program SA.EXE (Search Attractors). This program is a compiled BASIC pro-
gram (10 pages code). Among the downloadable files are numerous examples for wonderful strange 
attractors. Sprott’s search machine is based on a random choice of coefficients for the polynomials 
needed for one and more dimensional systems. He encodes the coefficients from -4.5 to 5.0 (with in-
crement = 0.1) with characters (from “ “ (ASCII 32) to “_” (ASCII 127)). Together with a leading 
character associated with the type of iteration each attractor can be described in a unique way. This is 
one example: 

 

“CBLCTX” describes a one-dimensional quartic map. 

decode(“CBLCTX”) = [-1.1, -0.1, -1, 0.7, 1.1] 

C is the code for a quartic, which reads as f(x) = –1.1 – 0.1x – x2 + 0.7x3 + 1.1x4.  

 

will give the plot of the of xi+3 vs xi plot of this attractor. 

The second one is for a two-dimensional quadratic mapping (will be 
presented very soon). 

 

 

Sprott’s codes for the coefficients of the iteration functions 
go up to 540 characters!! 

 

The “decoding”-function for the TI-NspireCAS is given on 
the handheld screen. 
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We could be satisfied to reproduce the numerous wonderful plots depicted in Sprott’s book together 
with so many others which are given by their codes only. pol_map and some other similar programs 
would do this up to strange attractors in 3D and 4D space. 

This is not sufficient for us and was not sufficient for Julien C. Sprott. He had the idea – and this is the 
core message of his book – to find own “self-made” strange attractors which had never been seen be-
fore. 

 
5 Search for Polynomial Attractors 

The trick is to create for polynomials of order n sets of randomly chosen coefficients between -5 and 
+5, compose the respective polynomials, interpret them as iteration function and then calculate their 
Lyapunov exponent. All sets of coefficients which give a positive LE are connected with an attractor. 
 

  
 

 
 
We start iteration with x0 = 0.05 and perform 2000 iterations. Only coefficient sets with a positive LE 
are listed. Please notice the write-command. You can follow the calculation progress in the status line 
at left bottom. 
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Let’s finish this first part of our tour by searching for polynomial attractors with TI-Nspire CAS. 
 

 

It needs some – not too difficult – tricks to obtain an output similar to the DERIVE output. Finally, we 
convert the resulting list into a matrix with the Les in the first column. The rest of the rows present the 
coefficients in the same order as before. 

 

 

The real exciting adventure will start in the next part of the tour. Promised!! 
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6 A famous two-dimensional quadratic mapping 

Let’s have a look to Julien C. Sprott. The attractor I have in mind is hidden behind his code 
“EWM?MPMMWMMMM”. 
 

 
You will surely recognize the famous Hénon-Attractor [3, 5, 7]. 
 
Please allow a side step. I use a program for modelling dynamic systems -VENSIM PLE [4]-  
(http://vensim.com/vensim-software/)  for plotting the Hénon-attractor: 

 

  
Hénon-Attractor generated with VENSIM PLE 
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The easiest way to create the Hénon-attractor on a TI-Nspire screen is defining the two recursive equa-
tions in the spreadsheet application as shown below. 

    

We can copy down 2500 rows maximum (with the software) and then plot the scatter diagram. We  
recognize that the graph looks a little bit different (maybe some inaccuracy?). 

 
 

Before showing other quadratic mappings, I’d like to present other Hénon-systems. 
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These are not attractors but variations of the initial point result in exciting graphs of chaotic distributed 
points in the plane forming unexpected patters. 

 

 

We can vary the initial point (left) or the angle (right). Unfortunately, we cannot produce the families 
of scatter diagrams with the TI-Nspire-environment. But what we can do is varying the parameters by a 
slider and observe how the “members of the family” are changing. 

   

   
 

22



 

 
More nice DERIVE-generated Hénon-families: 
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7 Generalized Polynomial Maps 

The next program (DERIVE and TI-Nspire) is to plot polynomial maps. As a reference for my program 
map I used one of the many graphs in Sprott’s book. 

 
 

 
My graph produced with my program 
map looks quite the same (20 000 points!). 

Sprott’s program returns the Lyapunov-ex- 
ponent and the fractal dimension (which  
I didn’t include in my investigations). 
 

His L =0.23 is confirmed by my ljap_e(“EJTTSMBOGLLQF”,1000). 

 
TI_Nspire’s map() cannon plot 20000 points, but as you can see 6000 points can do it also.  

 

It is possible to produce the plots using the spreadsheet app, too. But here we can only produce 2500 
points maximum – and it might be that we would miss some accuracy. I prefer the program. 
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Both map-programs understand Sprott’s codes and lists of coefficients as well.  
 
Sprott lists all his maps in an appendix. The two-dimensional cubic (case F) map needs 20 coefficients.  

 

The list of coefficients reads in the order [a1, a2, …, a20]. 
 
Some examples from Sprott’s collection 
 
Cubic maps 

 
 

 
 
 
 
 
 
 

 
 
 
Quartic and Quintic maps 
 
30 000 points with DERIVE 
 
 
 
 
 
 
 
 
 
See on the next page the 6000 points plot of the second and the last code from above (GUOBM … and 
HIFZ …) 
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You can see that we can obtain satisfying results with TI-Nspire, too. 

I don’t want to print the code of the map-program – it needs too much space. Instead of this I’ll present 
the next program which is much more demanding and interesting. 

 

7 Exciting Searches for “attractive” Polynomial Maps 

It is great to try the many promising codes and then admire the fantastic figures appearing on the 
screen. Then it is clear that one has the strong desire to find his own attractors. Just taking any numbers 
as coefficients is not very promising. So let’s apply our sa(order,number of tries) – program. 

On the next page you can find a demonstration how it works: 

I present the TI-Nspire procedure followed by one DERIVE search. 

With the Nspire it is recommended to enter a randseed number (at least for the first run) in order to 
start new investigations. With only ENTER the next random number will be generated based on the 
built-in randseed. 

The default initial point for searching and plotting as well is [0.05,0.05]. If you want to choose another 
point (be careful!) then you can add this point as third argument in the DERIVE program, but not in  
TI-Nspire. (Here you will be asked to enter another initial point than the default one!) 

The last important difference lies in the fact that you don’t need any work around for plotting the scat-
ter diagram in DERIVE and not to forget, we can generate and plot much more points! 
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It is comfortable to copy and paste the list of co-

efficients into the map(list, number of points) 
call. 
 
This is the final version showing only attractors 
with positive Lyapunov-exponents – they are the 
“attractive ones”. 
 
See the Nspire Calculator screen (software) and 
the respective polynomial map of order 3. The 
positive LE indicate “strange attractors”. 

 
 
Let’s do the same with DERIVE: I was lucky and found two “suspicious” Lyapunov-exponents and plot-
ted both quadratic maps (20000 iteration points). 
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Nice graphs, aren’t they? 

I plot also 10000 points of one list having a neg-

ative LE  = -0.0266. As you can see the graph 

is not very appealing – it is a point attractor. 

 

 

We can search for attractors generated by two-dimensional polynomial systems up to order o = 4.  
cf is the list of the randomly generated coefficients from (-2, +2) and its number cfs depends on the 
order o of the system. The distance to the separated points which is necessary for calculating the Lya-
punov exponent is fixed with 10-6, and the initial point is fixed at [0.05, 0.05] – but it can be changed. 

The result is a list of the polynomial coefficients together with the respective Lyapunov exponents. All 
other combinations of numbers are tries leading to unbounded iterations. 

This is the moment when discovering begins and the experiment becomes exciting. Make some thou-
sand tries and wait for the results. Feel happy if there are positive LEs appearing, because they promise 
STRANGE ATTRACTORS. Then plot some thousand iteration points, lean back and enjoy the mo-
ment when it is very likely that you are the very first person seeing this object appearing. 

For our “search attractor”-program we will use ITERATE as we did earlier. As you might know, unfor-
tunately ITERATE(S) is not implemented in the TI-Nspire tool box. So, I produced iterates_2() and 
iterate_2() for TI-NspireCAS. Please compare DERIVE’s ITERATE(S) and the TI-Nspire’s one. 
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I put the “iterates” into a library in order to have it available at any time. 

I reprint sa(o,n) for TI-Nspire. It is “inspired” by my DERIVE-program which was “inspired” by a huge 
BASIC program provided by Julien C. Sprott. The DERIVE version of the map-program will not be 
presented here. You are invited to inspect (and use!) it (can be found in attr.zip). 
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Let’s have another run searching for cubic maps (I changed the program, in order to give only attrac-
tors with positive Lyapunov-exponents): 

 

I plot one of the maps with a positive LE (right) and then the one map with its LE very close to zero. 
LE < 0 indicates a point attractor and LE = 0 announces a curve attractor. The left graph is a confirma-
tion of this. 

 
 

Browsing in Sprott’s book one gets an impression about his tremendous and time-consuming work col-
lecting all his wonderful attractors … and this is just the beginning of our real “Attractors’ Tour”. 
 
Last search for now: We’ll find a quartic map with TI-Nspire and plot 4000 points of it. 
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9 Two special polynomial maps (and attractors, of course) 

Some special structures of the polynomial functions result in special forms of attractors. Sprott called 
two of them “Symplectic Attractors” and “Plaid Attractors”. 

Symplectic Attractors 

2 3 4 5
1

1

n n n n n n n

n n

x a b x c x d x e x f x y

y g x




      

 
 

Plaid Attractors 
2 3 4

1

2 3 4
1

n n n n n

n n n n n

x a b y c y d y e y

y f g x h x i x k x





    

    
 

 

We will search for both types of attractors and then admire the results. (I changed the program to only 
return the coefficients giving a positive LE.) 
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You will understand why Sprott called them “Plaid-attractors”. I must admit that I don’t have any idea 
for “symplectic”. I found this attribute in Mathematics Encyclopedias but I couldn’t find any connec-
tion to the iteration formulae – silly me!? 

Julien C. Sprott included all his attractors (generating and plotting as well) into one huge menu-guided 
BASIS program. I liked to split it up. So, I separated the “symplectics” and the “plaids” from the other 
generalized polynomial maps. 

What about them on the TI-Nspire screen? 

 

    

Before exploring attractors in 3D space find some beautiful 2D-attractors: 
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10 Special Projections 

Julien C. Sprott added a nice feature to his menu driven program: One can call various projections of 
the 2D-maps. He offers spherical, vertical and horizontal cylindrical and toroidal projections i.e. the 
graphs are projected onto the front side of the respective solids. 
 
 
The challenge is to reproduce this with  
DERIVE! See how it works.  
 
 
We would like to project the given attractor 
(20000 points) onto the solids mentioned above. 
 
This is one of Sprott’s cubic attractors: 
Code: FIRPGVTFIDGCSXMFPKIDJ 
  

Attractor to be projected 
 

The DERIVE program is not too complicated. It is more or less the DERIVE-version of the respective 
part in Sprott’s huge BASIC program: 

 

Exchanging the following lines leads to projection on a horizontal cylinder a vertical cylinder and on a 
torus: 

pl_list ≔ [-1, 1] 
pl_list ≔ APPEND(pl_list,[[(xmax - xmin)·(xmax - pt↓1),COS(ph)]]) 
 

pl_list ≔ [x = -1, x = 1] 
pl_list ≔ APPEND(pl_list,[[-COS(th),-(ymax - ymin)·(ymax - pt↓2)]]) 
 

pl_list ≔ [x^2+y^2 = 1.5^2, x^2+y^2 = 0.5^2] 
pl_list ≔ APPEND(pl_list,[[(1+0.5·COS(th))·SIN(ph),(1+0.5·COS(th))·COS(ph)]]) 
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                          Projection on a sphere 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                    Projection on a torus 
                                                                                              Projection on a vertical cylinder (above) 
                                                                                                           and on a horizontal cylinder (below) 

 
                                                                       Spherical projection of a plaid 

The plots are a little bit time consuming! But it is not too bad, just be patient. 
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Taking in account that we cannot plot 30000 or 40000 points and that we are satisfied with only some 
thousand points we can transfer the projection routines on the TI-NspireCAS without any problems: 

 

 

Start with producing the scatter diagram for the attractor and then use the created lists of coordinates 
for the intended projections (see the spherical projection above as an example).  

 

How the attractor and its projection on a sphere appear on the handheld screen: 

     

The circle must be plotted additionally in the Graph Application (right). 
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11 A Step into the 3rd dimension 

DERIVE programs make possible to “read” Sprott’s code, to plot the 3D attractor …, and to perform 
own searches and discoveries. 

 

 
A 3-dimensional attractor ( = 0.14289) 

 

What we can do with DERIVE - and what Sprott’s awesome program is not able to do – is plotting a 
real 3D-graph which can be rotated. (But his program has many other features which - at least I - am 
unable to reproduce with DERIVE and TI-Nspire as well!!). 
 
See below the projections of this mysterious veil from above in x-, y-, and z-direction. 

 

Front-, top-, and side-view of the 3D-attractor 
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I include two slides from my ppt-presentation: 

 

  

Some 3-dimensional attractors  

 

 

One of Sprott’s 4-dimensional attractors in a 3D projection 
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You can plot tiny points (recommended for a large set of them – more than 10 000) or dots (recom-
mended for a smaller amount of data points). I will describe the difference in programming both ways 
in a short appendix “Points and Dots in 3D-plots” (page 39). 

   
map_3d(ILURCEGOHOIQFJKBSNYGSNRUKKIKIHW, 10000) 
 
map_3d_dots(ILURCEGOHOIQFJKBSNYGSNRUKKIKIHW, 10000) 
 
I take it always as a challenge to transfer DERIVE programs to TI-NspireCAS.  You can find the pro-
grams in files SA_DERIVE_3D (for DERIVE) and attractors.tns (for TI-Nspire). 

 

Unfortunately, we cannot plot a 3D scatter diagram with TI-Nspire. So, we must restrict our presenta-
tion on projections in direction of the axes. See first all projections on one screen (code: "ILUR…"). 

 
 

     
 
Compare the projections on the handheld with the DERIVE plots on page 38. 

40  



 

 
12 Search in 3rd dimension with TI-NspireCAS? 

I am quite sure, that you will know, what I was doing – translating the DERIVE Code into TI-Nspire 
language – and it works (The coefficients in list cf are chosen between -1.3 and +1.3.) 

This is the TI-NspireCAS program. Some details will be given. 

Define sa3d(o,n)= 
Prgm 
:Local r,lsum,st0,cf,cfs,fs,i,f,g,h,xs,ys,zs,xe,ye,ze,xee,yee,zee,j,rs,dl3,vals,xn,yn,zn,λ 
:Try 
:RequestStr "Enter any pos. integer or press ENTER:",r 
:   If r≠"" Then 
:      RandSeed expr(r) 
:   EndIf 
:   Else 
:   Goto next 
:EndTry 
:Lbl next 
:If o=2 Then 
:   fs:={1,x,x^(2),x*y,x*z,y,y^(2),y*z,z,z^(2)} 
:EndIf 
:If o=3 Then 
:   fs:={1,x,x^(2),x^(3),x^(2)*y,x^(2)*z,x*y,x*y^(2),x*y*z,x*z,x*z^(2),y,y^(2),y^(3),y^(2)*z, 
           y*z,y*z^(2),z,z^(2),z^(3)} 
:EndIf 
:If o=4 Then 
:   fs:={1,x,x^(2),x^(3),x^(4),x^(3)*y,x^(3)*z,x^(2)*y,x^(2)*y^(2),x^(2)*y*z,x^(2)*z,x^(2)*z^(2), 
           x*y,x*y^(2),x*y^(3),x*y^(2)*z,x*y*z,x*y*z^(2),x*z,x*z^(2),x*z^(3),y,y^(2),y^(3),y^(4), 
           y^(3)*z,y^(2)*z,y^(2)*z^(2),y*z,y*z^(2),y*z^(3),z,z^(2),z^(3),z^(4)} 
:EndIf 
:cfs:=dim(fs) : :vals:=0 
:For i,1,n 
:cf:=((floor(100*(2.6*rand(3*cfs)-1.3)))/(100)) 
:f:=sum(left(cf,cfs)*fs):g:=sum(mid(cf,cfs+1,cfs)*fs):h:=sum(right(cf,cfs)*fs) 
:lsum:=0 
:st0:=iterate_3({f,g,h},{x,y,z},{0.05,0.05,0.05},5) 
:xs:=st0[1]:ys:=st0[2]:zs:=st0[3]:xe:=xs+1.−6: ye:=ys: ze:=zs 
:For j,1,2000 
:   If abs(xs)>10 or abs(ys)>10 or abs(zs)>10 Then 
:      Goto nexttry 
:   EndIf 
:   xn:=f|x=xs and y=ys and z=zs:   yn:=g|x=xs and y=ys and z=zs 
:   zn:=h|x=xs and y=ys and z=zs:   xee:=f|x=xe and y=ye and z=ze 
:   yee:=g|x=xe and y=ye and z=ze:   zee:=h|x=xe and y=ye and z=ze 
:   xe:=xee: ye:=yee: ze:=zee 
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:   dl3:=(xn-xe)^(2)+(yn-ye)^(2)+(zn-ze)^(2):rs:=((1)/(10^(6)*√(dl3))) 
:   xs:=xn:ys:=yn:zs:=zn:xe:=xs+rs*(xe-xs):ye:=ys+rs*(ye-ys):ze:=zs+rs*(ze-zs) 
:   lsum:=lsum+ln(10^(12)*dl3) 
:EndFor 
:λ:=((((1)/(2*ln(2)))*lsum)/(j)) 
:If λ>0.05 Then 
:   vals:=1:Disp "λ="&string(λ):Disp cf 
:EndIf 
:Lbl nexttry 
:EndFor 
:If vals=0 Then 
:   Disp "no attractor found" 
:EndIf 
:EndPrgm 

 
 
You can use the built-in initial number for the random number generator or you can enter any integer 

for generating the set of coefficients cf. The important part is calculating the Lyapunov-exponent λ. All 

sets of coefficients giving λ > 0.05 promise a – more or less – attractive attractor. 
 
 

   

My very first 1000 tries gave four positive L.Es. Then I applied map3d in order to receive the lists of 

coordinates. Thus, I was able to plot a projection on a plane as a scatter diagram: 
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The right plot shows all possible projections of a quadratic 3D-attractor. Another attractive attractor is 
presented below. 

 
 
Just for fun I copied the list of coefficients to DERIVE and tried to plot the attractor in form of 30000 
dots (left, heat wave) and 40000 points (right). Now I could perform a true 3D-plot and move the cloud 
of data points around. 

 
I skip presenting the procedure to create 3D-projections of 4D attractors. The DERIVE program is in-
cluded in SA_DERIVE_3D.dfw. 
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13 The Rössler Attractor 

Two very famous and well known 3-dimensional attractors are the Lorenz attractor and the Rössler-
attractor. We will skip the first one and focus on the latter one. 
 
We receive it when solving the following system of ODEs numerically. 
 

( )

x y z

y x a y

z b z x c

  
 
  





 

 

   

3D graph of the Rössler-attractor (DERIVE made) 
 
I can do this using various software tools. 
 
With DERIVE I will apply the implemented Runge-Kutta-Algorithm: 

Taking the parameters as follows we have limit cycles for c = 2, 3 and 4, which let us recognize the 
period doubling. 

VECTOR((RK([–y – z, x + 0.2·y, 0.2 + z·(x – c)], [t, x, y, z], [0, 1, 0, 0],  
 0.01, 10000))↓↓[2, 3], c, 2, 4) 

 
 

  

Three Rössler-attractors for c = 2, 3, 4 (3D and top view) 
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This the representation of the attractor with MS Excel. As you can see I introduced sliders for the pa-
rameters a, b, and c and the initial values as well. The 3D representation is the result of a transfor-
mation into the xy-plane. 

 

 

Rössler-attractors in a spreadsheet with sliders 

 
TI-Nspire also allows using sliders. 
 
Here is an additional slider for dt added. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rössler-attractor with TI-NspireCAS
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Finally, I’d like to show the oscillations of x, y, and z created with the dynamic systems software  
VENSIM PLE. 

 

 

Rössler attractor with VENSIM PLE 
 
 

13 “Attractive” systems of ODEs 

Sprott mentions the Rössler-attractor, too and offers it as one of an infinite number of systems of ODEs 
generating unexpected graphs. I transferred his program to DERIVE and plotted the attractor without 
Runge-Kutta as a set of 10000 not connected points. 

 

 

Rössler-attractor as a strange attractor 
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Roessler Attractor
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Maybe that you now can imagine that I got an appetite for my own homemade ODE attractors. 

 
Above is a part of my “Search Attractive ODEs”-program with order 2  o  5 testing n sets of ran-

domly generated coefficients between -2 and +2. 

In the following will present some of my findings: 

 
Order 2,  = 1.59, 10000 points 

 
Order 2,  = 0.09, 10000 points 

Trajectories of 2nd order ODE systems 
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Order 3,  = 1.30, 20000 points 

 

Order 3,  = 1.15, 10000 points 

 
 
 

 

Order 4,  = 0.886, 10000 points 

 

Order 4,  = 0.26, 10000 points 

 

 

Order 5,  = 0.09, 1000 points Order 5,  = 1.43, 10000 points 

Trajectories of ODE systems of order 3,4 and 5 
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TI-NspireCAS proudly presents on of Sprott’s ODE-attractors: 

map_ode("QRREQDTWELEQMTMLAAPRGDJJKLPYAFO",7000) 
 

     

What’s about our own ODE-attractors? No problem – see below: 

 

We enter sa_ode(2≤order≤4), number of tries) and receive sets of coefficients together with the corre-
sponding Lyapunov-exponent in two separated lines. Then it is comfortable to copy the list into the 

map_ode()-program call. 

   

Order 4, λ = 0.16 (top and side view)               Order 2, λ = 0.24                           Order 3, λ = 3.45 (all views) 

 
 

49



 

 
14 Gumowski-Mira-Attractors 

You can find many other features offered in Sprott’s book and in his SA.EXE program: attractors with 
shadows, 4-dimensional attractors with the 4th dimension interpreted as colour or as sound, sliced at-
tractors, attractors as analglyphs, and, and, and, … Now we will leave Sprott’s wonderful source of in-
spiration. 
 
I will take the occasion to present some other types of recursive functions which also result in surpris-
ing graphs. 
 
Two physicists, I. Gumowski and C. Mira found in the frame of their work at CERN in Geneva in 1980 
a new type of attractors [12, 13]. 
 
The original model (type 1) is described by 

1

1 1

( )

( )

n n n

n n n

x b y f x

y x f x



 

  

  
 with

2

2

2 (1 )
( )

1

a x
f x a x

x


  


;  a, b are constants. 

You can find many variations of the original form (see the references). Here is one of them (type 2): 

1

1 1

2(1 ( )

( )

)n n n

n n n

n nx y a b y f x

y x f x

y

 

    

  

 
 with

2

2

2 (1 )
( )

1

x
f x x

x





  


;  a, b, μ are constants. 

You can also vary function f(x). 

I tried to write my DERIVE-function gm(a, b, f, n, type, x0, y0) in a form to cope with both 
types. type = 1, x0 = y0 = 0.1 are the default values. 

gm(aa, bb, f, n, type ≔ 1, x0 ≔ 0.1, y0 ≔ 0.1, i, pts, xn, yn) ≔  
  Prog 
    pts ≔ [[x0, y0]] 
    i ≔ 1 
    Loop 
      If i > n 
         RETURN pts 
      xn ≔ ((1 - bb)·(type - 2) + 1)·y0 + (type - 1)·aa·(1 - bb·y0^2)·y0 +  
           LIM(LIM(LIM(f, x, x0), a, aa), b, bb) 
      yn ≔ -x0 + LIM(LIM(LIM(f, x, xn), a, aa), b, bb) 
      pts ≔ APPEND(pts, [[xn, yn]]) 
      [x0 ≔ xn, y0 ≔ yn] 
      i :+ 1 
 

 

 

 

 

 My first Gumowski-Mira attractors 
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A short visit in my Gumowski-Mira Gallery: 

  

  

  

 

 

 

 

Gumowski-Mira-attractors 
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And here is the TI-NspireCAS version: 
 

Define gm(aa,bb,f,n)= 
Prgm 
:Local type,start,xo,yo,xn,yn,i 
:Lbl typ_ 
:Request "Enter type (1/2):",type 
:If type≠1 and type≠2 Then 
:   Goto typ_ 
:EndIf 
:Try 
:RequestStr "Enter initial point {x0,y0} or ENTER:",start 
:If start≠"" Then 
:   start:=expr(start) 
:EndIf 
:Else 
:   start:={0.1,0.1} 
:   Goto next 
:EndTry 
:Lbl next 
:xo:=start[1]:yo:=start[2]:xlist:={xo}:ylist:={yo} 
:For i,1,n 
:If abs(xo)>100 or abs(yo)>100 Then 
:   Goto end 
:EndIf 
:xn:=((1-bb)*(type-2)+1)*yo+(type-1)*aa*(1-bb*yo^(2))*yo+f|x=xo and a=aa and b=bb 
:yn:=−xo+f|x=xn and a=aa and b=bb 
:xlist:=augment(xlist,{xn}):ylist:=augment(ylist,{yn}) 
:xo:=xn:yo:=yn 
:EndFor 
:Lbl end 
:Disp "Coordinates for scatter diagram in xlist and ylist" 
:EndPrgm 
 
 
You can choose between G-M-attractors of type 1 and type 2. In case of type 2 you have to enter func-
tion f(x) as third argument. See first one input example for type 1: 
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One example for GM-attractor of type 2
 

 
Another four attractors (gumowski2.dfw): 
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15 Peter De Jong-Attractors – and “My- Attractor” 

And there are a couple of websites presenting Peter De Jong-attractors [5, 9, 10]. The dynamic system cre-
ating this beautiful family of strange attractors is given by 

1

1

sin( ) cos( )

sin( ) cos( )
n

n

n n

n n

x

y

a y b x

c x d y








  
  

   with x0 and y0 any real number not being both = 0. 

My first DERIVE-function reads as follows: 

 
 
 
I was happy with my first strange attractor result-
ing from a random choice for a, b, c, d. 

 

 
 

Inspecting the DERIVE-code carefully you may 
discover a big mistake in the algorithm. The two 
important lines describing the recursion are gen-
erating another dynamic system, namely 

1

1 1

sin( ) cos( )

sin( ) cos( )
n

n

n n

n n

x

y

a y b x

c x d y


 





  
  

  

My first Peter De Jong-attractor which wasn’t one 
 

This is the true Peter De Jong-attractor function in DERIVE code followed by the respective graph. 
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What a difference! 

 
Can it really be that I found by mere chance a new attractor type – the “JB-attractor”?. This is the great 
and exciting side of moving in this field of mathematics. It makes you feel as a discoverer. Just experi-
ment and play around with functions and parameter values and you will have – intentionally or not –a 
big chance to get a reward for your efforts. 
 
Please compare the “JB-attractors” (left) and the respective PDJ-attractors (right) using the same pa-
rameter values. 
 

 
 

 
 

“My JB-attractor” (left) vs Peter De Jong-attractor (right) 
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Some other comparisons (“true” PdJ-attractor is in the right column) 

You can change the signs, the parameters, and add other functions in the PDJ-definition. Just give it a 
try. You may also combine the search for nice patterns with random generated sets of parameter values. 
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16 Clifford Pickover’s Million Points 
 
There is a chapter “One Million Points Sculptures” in Clifford Pickover’s very recommendable book 
Computers and the Imagination [10] (in German: Mit den Augen des Computers [9]) where Pickover pre-
sents graphs consisting of one-million-point-attractors generated by dynamic systems based also on 
trigonometric functions. 
 
This was challenge enough for me to try with our CAS. 10000 points are sufficiently enough for pro-
ducing the “sculptures”. 

 

 
 

 

 

 

“Clifford –attractors” 
 
cliff0() and cliff1() are two of Pickover’s originals, cliff2() is a slight change. 
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Preparing this paper, I studied once more Pickover’s general recipe (which in my opinion has typos - at 
least - in the German translation). 

I believe that it shall read as follows: 

1
1

1
1

sin ( ( , ))

sin ( ( , ))

k
n n n

k

k
n n n

k

x b f x y

y a g x y











 

 




 with 

( , ) (1 )

( , ) (1 )
n n n n

n n n n

f x y p x p y

g x y q x q y

    
    

; , {0,1}.p q  

So, we have a sum of powers of sine-functions with b·xn or b·yn for xn+1´and with a·xn or a·yn for yn+1.  
According to Pickover we take only the first expressions of the sums. All initial points (x0, y0) lead to 
the same figure. I take x0 = 20, y0 = 30. 
 

 
The rx↓j and ry↓j are the p and q of the formulae above and generate a random composition of the 
sine powers. Please observe the two DISPLAY– functions, which present the randomly created recur-
sions – for later documentation and possible reproduction. 

Now let’s have a run: 
 

 
Plot is right, another example is below: 
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I asked myself: “Why not randomly choose the coefficients a and b in both recursion equations?” 
 

 

 

The first try resulted in a very nice attractor. 

 

The random number generator gave only bs for 
xn+1 and only as for yn+1. 

The attractor is pretty “attractive”, isn’t it? 
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I tried to find some more details about this family of attractors in the web and so I came across the site 

https://fronkonstin.com/2017/11/07/drawing-10-million-points-with-ggplot-clifford-attractors/ 

where a certain “Fronkonstin” used a different pair of equations generating a Clifford-attractor: 

 

 

 

 
The first call of cliff4 shows the first 30 000 
points of his graph, the second one with two 
parameters exchanged give the blue graph. 
 
What you can see right is the result of 10 mil-
lion points finally rendered with an extra soft-
ware. 
 
There are some other great 10 million-point 
plots on the site. 
 
 

More nice graphs can be found at: 
 
https://fronkonstin.com/2014/10/13/beautiful-curves-the-harmonograph/ 
http://www.walkingrandomly.com/?p=151 
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17 Finally, the last one – the Ikeda-Attractor 

The Ikeda-system [9, 10] is given by:  

1

1

2 2

( cos sin )

( sin cos )

1

n n n

n n n

n n

x a b x t y t

y b x t y t

d
t c

x y





   

  

 
 

 

The system is insensitive with regard to the initial values. We can take any real numbers in order to re-
ceive the attractor. 
  

 

 

Ikeda attractor 

It needs only exchanging two signs to receive other exciting forms: 

             xn ≔ a + b·(x0·COS(t) + y0·SIN(t)), 
             yn ≔ b·(x0·SIN(t) - y0·COS(t)), 

 

  

Ikeda-attractor with exchanged signs 
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Ikeda-related attractors 

18 I cannot resist … 

… to add two more attractors. There are so many resources on Chaos and Fractals in the web and by 
mere chance I came across “Fraktalwelt” (maintained by Ulrich Schwebinghaus, see under the refer-
ences) where two more fractal types are presented: Kaneko attractor and Martin attractor. They were 
not included in my original Strange Attractors paper.  

I decided to add them here in order to have two TI-Nspire treatments as final chapter in my series of 
contributions. 

I’ll start with the Kaneko-attractor (Dr. Kunihiko Kaneko, University of Tokyo). 

I believe that it is not necessary to give explicitly the recursion formulae. They are easy to read off 
from the program code. The attractors do not depend on initial values. So, we need only to enter the 
values for parameters a and b, the number of iterations and the attractor type (1/2). 
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Some parameters which will give nice graphs are provided on the website. 

   

Then we have the Martin-attractor (the formula given on the website is not correct!):  

 

Unfortunately, there is a typo on the website: the expression for xn is given without the absolute value 
under the root – this does not work. 
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Both plots above show the same attractor with different number of iterations. 

It is a good idea to test the programs with the parameters provided by Schwebinghaus but the real ad-
venture will start when you try to explore the world of attractors by trying own parameters being aware 
that you might be the first person admiring your product. Try also to vary the recursion equations – 
maybe that you find another type of attractors – good luck. 

Now I will really close with two DERIVE produced attractors using parameters which are not given on 
the website. 

 

 

 
 
 
19 First Summary 

Producing, admiring and discussing strange attractors offers another approach to mathematics. It is not 
so easy to convince ordinary secondary school students that a theorem and/or its proof is “beautiful”. 
These attractors are beautiful and the students can feel as discoverers and creators. This may change 
their attitude towards mathematics and can be a motivation for the “hard facts”, too. 
 
Students can be asked for internet research. Let them find other attractors – there are a lot more. You 
can use several tools – not only DERIVE – for receiving satisfying results. 
 
Below are two examples of my further search in the web: 

  
For further investigations: symmetric Golubitsky-attractors 
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20 The Duffing-Oscillator 

If you run Sprott’s SA-program or read his book then you can find two numbers together with the gen-
erated attractors as depicted below: L is the now well-known Lyapunov-exponent and F is the Fractal 
Dimension which we have not addressed until now. This shall change. 

 

For this “Strange Attractor” its Lyapunov-exponent is L = 0.16 and its Fractal Dimension is F = 1.42. 

But let me tell you how it began: I subscribed the free Electronical Journal for Mathematics & Tech-
nology (https://php.radford.edu/~ejmt/) and investigated the ContentIndex. So, I came across a title 
which attracted – attractors again! –  me: Chaotic dynamics with Maxima written by two Mexican 
mathematicians (Antonio Morante and José A. Vallejo). (https://arxiv.org/abs/1301.3240) 

As I have some – not too much – experience with Maxima I downloaded the pdf-file and was very en-
thusiastic because I found an approach for calculating the fractal dimension together with something 
which was absolutely new for me, the Poincaré-sections.  

Fortunately, not only the explications and descriptions are given in this paper, but also the Maxima-
code. It was a challenge to “translate” this code into the DERIVE- and TI-Nspire-language and – by the 
way – to learn something new. 

I skip the first eight paragraphs of the paper which treat the logistic equation, Feigenbaum-diagram,  

Lorenz attractor, Lyapunov exponent and the differential equation 31 1
( ) ( ) ( ) ( ).

4 10
x t x t x t x t     Then 

the authors add an oscillating force in form of a sine-function and describe: 

We start solving the differential equation numerically 

31 1
( ) ( ) ( ) ( ) 2.5 sin(2 ).

4 10
x t x t x t x t t        
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And proceed plotting its solution (%t20) and its phase diagram (%t21): 

(%i15)  duff1:[v,-v/10+x-x^3/4+2.5*sin(2*t)]$ 

(%i16)  icduff1:[0,0]$; 

(%i17)  sduff1:rk(duff1,[x,v],icduff1,[t,0,100,0.1])$; 

(%i18)  cduff1:map(lambda([x],rest(x,-1)),sduff1)$; 

(%i19)  pduff1:map(lambda([x],rest(x)),sduff1)$; 

(%i20)  wxdraw2d(point_type=none,points_joined=true,color = coral, 

            xlabel="t",ylabel="x(t)",points(cduff1)); 

 
 

 

 

 

 

(%t20) 

 

(%i21)  wxdraw2d(point_type=none,points_joined=true,color = coral, 
            xlabel="x(t)",ylabel="v(t)",points(pduff1)); 

 
 
 
 
 
 
 
 
(%t21) 
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For editing the 2nd order DE it is necessary to rewrite it as a system of two differential equations. 

This is the advice how to do given in the DERIVE Online-Help: 

A second or higher order ordinary differential equation can always 
be transformed into an equivalent system of first order differen-
tial equations as follows: 

First, introduce a unique new variable for each derivative except 
the highest. 

Next, replace the highest order derivative with the first deriva-
tive of the variable that represents the next-highest order deriv-
ative. 

Finally, for each of the other variables, add to the system an 
equation that equates its first derivative to the variable that 
represents the next higher order derivative.   

For example, this procedure transforms a second order equation of 
the form  
f (x, y", y', y) = 0 into the system of first order equations f 
(x, v', v, y) = 0 and y' = v. 

I followed this hint considering the appropriate notification of the variables (compare with Maximas’s 
duff1:[v,-v/10+x-x^3/4+2.5*sin(2*t)]) and got satisfying results in form of impressive 

plots on the TI-NspireCAS-screen. 

 

In order to save space I print the handheld screens: 
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Following once more the instructions it is no problem to present the oscillator on the DERIVE-screen: 

 

  
21 The Poincaré-Section 

The second part is a little bit harder to perform. Poincaré proposed a technique to illustrate the special 
dynamics of this solution. 

He introduced stops equally spaced in time and fixed the respective points. The frequency of our oscil-

lator is 2, hence the period is 
2

.
2

T
    What we do now is the following: we take every moment of 

the phase diagram when a full period is done and plot the respective point. 

We produce the phase diagram for 1000 periods applying a step width of π/30 and plot every thirtieth 
point – and surprisingly we see an attractor evolving - as a consequence of the chaotic behavior of the 
solution as shown above. 

This is how the two Mexican mathematicians did using Maxima: 
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(%i30)  τ:bfloat(π); 
(τ)     3.141592653589793b0 

(%i31)  maxiter2:1000$; 

(%i32)  sduff3:rk(duff1,[x,v],icduff1,[t,0,maxiter2*τ,τ/30])$; 

(%i33)  pduff3:create_list(sduff3[i],i,makelist(i*30,i,1,maxiter2))$; 

(%i34)  ptsduff3:map(lambda([x],rest(x)),makelist(pduff3[i],i,1, 
        maxiter2))$; 

(%i35)  wxdraw2d(point_size=0.3,point_type=circle, 
        color = blue,xticks=1,yticks=1, 
        xrange=[-5,5] ,yrange=[-7,3],points(pduff3),grid=true)$; 

 
 
 
 
 
 
 
 
(%t35) 

The DERIVE code is very short. I perform 90 000 RK-iteration steps which gives 3000 points of the 
Poincaré-section. 
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With the TI-NspireCAS it is not so easy – at least for me – because of the restricted memory resources. 
I was not able to generate 30 000 iterations in the Calculator in order to find 1000 points of the  

Poincaré-section. One can create the RK-table using the rk23()-function even in the Lists & Spread-

sheet App but – just in a restricted amount. 

So, I found a workaround writing a program. It calculates the points of the Poincaré section in 300 
steps with 10 periods each. I take the last iteration values of one period as initial conditions of the next 
one – and I hope that it works and that the resulting figure will match with the above ones. Give it a try 
and much luck: 

 
 
 
 
Wow, it works and it gives a satisfy-
ing plot of the section (3000 points). 
It is not quite the same because of 
different Runge-Kutta methods 
(RK32 and RK4). 

The question could arise if all duff-
ing oscillators give (strange) attrac-
tors as Poincaré sections. 

It is now no problem for us to find an 
answer. 
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I change the oscillating force to 2.5 sin(t) (→ frequency = 1 and period = 2π) and adapt poincare() to 
poincare2(): 

. 

There is no strange attractor, but there are three-point 
attractors. That says to us that the phase diagram pre-
fers three positions after each period (cycle). 

I plot the solution together with the phase diagram and 
the Poincare sections (red) in one plot. 

We see three cycles corresponding with the three clus-
ters of P.S.-points. 

Conclusion: We cannot expect a strange attractor auto-
matically. 

 

  
 

Here is another variation of the oscillator tending to one 
limit cycle and the section points tending to one-point at-
tractor. You can follow the connecting lines. 
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22 The Fractal Dimension 

A fractal dimension is an index for characterizing fractal patterns or sets by quan-
tifying their complexity as a ratio of the change in detail to the change in scale. 

There are several ways to define a fractal dimension. Morante and Vallejo apply the Box-Counting di-

mension. For this purpose, the attractor will be enclosed in a box which is in our case a grid of 10 x 10 

boxes ([-5,5]  [-7,3]). The authors proceed by dividing this box further in 20 x 20, 30 x 30, …,  

200 x 200 boxes and count how many of the boxes contain at least one point of the attractor. 

So, we have a sequence of k scales k (10,20,30, …, 200) and a corresponding sequence N(k) of  

point containing grid boxes. The box-counting dimension D is then defined as 

log ( )
lim .

logk
k

N k
D


  

Morante and Valeja plot log N(k) versus k and estimate D as the slope of the respective linear regres-

sion line.  

I believe that it will be the best to show now the Maxima-procedure first: 

(%i36)  resolution:20$ 

(%i37)  for n:1 thru resolution do 
          (Z[n]:substpart("[",zeromatrix(10*n,10*n),0), 
          boxcount[n]:0, 
          for k:1 thru maxiter2 do 
           (ix:floor(n*(ptsduff3[k][1]+5)), 
            iy:floor(n*(ptsduff3[k][2]+7)), 
            if is (Z[n][ix][iy]=0) then 
                   (Z[n][ix][iy]:1,boxcount[n]:boxcount[n]+1)))$ 

(%i38)  makelist(boxcount[n],n,1,resolution); 

(%o38)  [47,145,266,395,502,585,669,726,748,799,811,845,855,878,883, 
         916,916,908,913,924] 
(%i39)  fitdim:makelist([log(n)/log(10),log(boxcount[n])],n,1, 
        resolution),numer$ 
(%i40)  wxdraw2d(point_size=1,point_type=filled_circle, 
        color=dark_violet,points(fitdim)); 

 

 

 

(%t40) 
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The authors propose – according to some resources – to eliminate the first seven and the last two points 
in order to give a suitable estimation for the fractal dimension: 

(%i41)   fitdimension:rest(rest(fitdim,7),-2)$ 

(%i42)   load(stats)$ 

(%i43)   model:linear_regression(fitdimension)$ 

(%i44)   fiteqn:take_inference('b_estimation,model); 
(fiteqn) [5.987530299487617,0.6796510687848922] 

(%i45)   fract_dim:second(%); 
(fract_dim)0.6796510687848922 

 
In the authors’ opinion the fractal dimension of the Poincaré-section of the Duffing-oscillator is ap-
proximately 0.68 (slope of the regression line). I must admit that I have my concerns because I cannot 
explain their use log(n)/log(10) as argument for the log of the counted boxes instead of log(10n)? 

However, let’s try transferring this to DERIVE: 

  

Before proceeding I wanted to check, if my DERIVE program for counting the boxes which contain at 

least one attractor point works properly. I printed the set of 1000 points together with a 10  10 and 

then with a 20  20 grid and counted the boxes: 
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                 0              5            7            6            5             7           7            7            4             0       = 48    
 

 

Please check it!  = 146 
This looks pretty good!! 
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Moreover, I built in a special trick for visualizing the filled grid boxes. If you remove the quotes at the 

end of the program you will receive the 10  10 grid as a matrix which represents the boxes after per-

forming the first step. 

 
You are invited to compare this matrix with the first plot on page 74. 
 
The number of counted boxes differ from the Maxima numbers (%o38). So, I don’t expect the same 
result for the regression line: 

 

 
The fractal dimension here is  0.76. 

 

Using log(10n) as argument gives quite another result: 0.33. 

On page 72 I explained (according to all resources): 

The box-counting dimension D is then defined as 
log ( )

lim .
logk

k

N k
D


  
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I will come back to this sequence later. 
 
 
23 Changing Scale or/and Range 

I changed the range for -4 ≤ x ≤ +4 and -6 ≤ y ≤ 2: 

 

I notice that the FD changes but the sequence of the fractal dimensions tends again to approximately 
1.29, 1.30   

 

And indeed scale1.29 gives approximately the numbers of the boxes … 

 

Then I changed the scaling from 10, 20, 30, … to 1, 2, 4, 8, 16, …: 
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I performed all calculations from above using this new scaling for both ranges: 

 

 

The quotient 
log ( )

log k

N k


 tends again very similar to approximately 1.30. 
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I could not resist to count again the boxes for 16  16 and the 20  20 grid of boxes for the smaller 

range in order to test my fractdim-programs. 

 
146 boxes? 

 
197 boxes? 

Seems to be ok! 
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25 Another Kind of Fractal Dimension 

Sprott uses another kind of fractal dimension. I cite a part of his explanation [1]: 

One method is to draw a small circle somewhere on the plane that surrounds at least 
one of the points. We then draw a second circle with the same center but with twice 
the radius. Now we count the number of points inside each circle. Let’s say the smaller 
circle encloses n1 points and the larger circle encloses n2 points. Obviously n2 is 
greater than or equal to n1 because all the points inside the inner circle are also inside 
the outer circle. 

If the points are widely separated, then n2 equals n1. If the points are part of a straight 
line, the larger circle on average encloses twice as many points as the smaller circle, 
but if the points are part of a plane, the larger circle on average encloses four times 
as many points as the smaller circle, because the area of a circle is proportional to 
the square of its radius. Thus, for these simple cases the dimension is given by 

 
 
 

2= log .2

1

n
F

n
 

Sprott suggests to use a value of ten instead of doubling the radius and chooses the smaller circle about 
0.6% the size of the attractor and the larger circle about 6% of this size. As a consequence, we will use 
logarithms of base 10 instead of base 2. This dimension is called correlation dimension which is never 
greater than the fractal dimension, but it tends not to be much smaller either. 

Rather than count the number of data points within a circle, which would require that 
the calculation run to conclusion with the coordinates of all the points saved, we use 
the equivalent method of determining the probability that two randomly chosen points 
are within a certain distance of one another. To do this, the distance of each new 
iterate from one of its randomly chosen predecessors is calculated. 

Now you see why we bothered to save the last 500 iterates! We exclude the most 
recent 20 points, because the iterates are likely to be abnormally highly correlated 
with their recent predecessors. Thus, with each iteration, we have only one additional 
calculation to do in which we compare the distance of the iterate to one of its randomly 
chosen predecessors and increment n1 and n2, as appropriate. 

You will find more details in Sprott’s book [1]. 

I “translated” Sprott’s Quick BASIC subprogram for calculating the dimension into DERIVE language 
and then compared my results with Sprott’s ones. Sprott discards the first 1000 iterates before calculat-
ing the dimension. His BASIC program updates continuously the dimension value using much more 
points than my DERIVE program which must first store all attractor points. 
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I used my map-program from page 24 to create one of Sprott’s attractors and calculated the correlation 
dimension 20 times: 

  
A screen shot of the BASIC program containing much more iterations gives a dimension of 1.42. Thus, 
my program seems to work correctly (L is the respective Lyapunov-exponent). See page 65. 

 
Let’s have a second example: 

 
 

 
 
 
  
 
  

 
Sprott’s value: F = 1.67 
 
 
 
 
 
You are invited to calculate the box-counting fractal dimension of these – or other – attractors. 
 
 
25 Dimension 1, Dimension 2 

According to my understanding the set of points filling a line should have dimension 1 and points fill-
ing a plane should have dimension 2. So, let’s check! 

The “attractor” is a segment consisting of 5000 random 
points. Then I calculate the correlation dimension 10 
times: 

 

Close enough to 1, isn’t it? 
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The next attractor is a rectangle “filled” with 10 000 points: 

 

 

26 Fractal Dimension on TI-NspireCAS 

I did not intend to treat the FD with TI-Nspire, too. But finally I thought that it would be fine to add at 
least one method for Nspire. 

 

On page 80 you can find the respective DERIVE results together with Sprott’s FD-values. Comparing 
them one must have in mind that we cannot consider so many points for calculating the FD with  
TI-Nspire. 5000 points will cause “Resource exhaustion”. 
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           Plot to map("ETJUBWEDNRORR",4000)                       FD for map("EZPMSGCNFRENG",5000) 

                 

Plot and FDs for map("EJTTSMBOGLLQF",4000) 

Now I will stop this never-ending story of strange attractors. It kept me busy many, many hours but  
I am not quite sure, if I am right in all my considerations. So, I could not verify dimension 2 for the 
rectangle with the box-counting dimension. It would be great to receive any comment and/or improve-
ment. 

There are lots of respective websites and books, but I could find only one of them performing the box-
counting method step by step (MAPLE) – there were just descriptions – many of them pretty the same! 
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Recommended websites 

www.math.kit.edu/iana1/~melcher/media/lyapunov-final.pdf 

en.wikipedia.org/Lyapunov_exponent 

mathworld.wolfram.com/LyapunovCharacteristicExponent.html 

math.cmaisonneuve.qc.ca/alevesque/chaos_fract/Attracteurs/Attracteurs.html 

blog.nihilogic.dk/2009/10/strange-attractors-beautiful-chaos-and.html 

www.robert-doerner.de/Henon-System/henon-system.html 

www.complexification.net/gallery/machines/peterdejong/ 

demonstrations.wolfram.com/PeterDeJongAttractors/ 

www.cc.gatech.edu/~phlosoft/attractors/ 

wonderfl.net/tag/Chaos 

paulbourke.net/fractals/peterdejong/, paulbourke.net/fractals/ikeda/, paulbourke.net/fractals/fracdim/ 

paulbourke.net/papers/shier2013/paper.pdf 

people.mbi.ohio-state.edu/mgolubitsky/reprintweb-0.5/output/papers/symmetry_increasing.pdf 

en.wikipedia.org/wiki/List_of_chaotic_maps 

www.xplora.org/downloads/Knoppix/Fraktalwelt/myhome/simpiter.htm#martin 

www.fraktalwelt.de/myhome/simpiter2.htm,  

www.fraktalwelt.de/myhome/fractype.htm (English and German) 

imagej.nih.gov/ij/plugins/fraclac/FLHelp/Fractals.htm 

arxiv.org/ 

en.wikipedia.org/wiki/Fractal_dimension 

www.fast.u-psud.fr/~moisy/ml/boxcount/html/demo.html 

The screenshots below are two results produced by Sprott’s SA.EXE which is a compiled BASIC pro-
gram. It does not run under WIN 7/10. But it does work using a “DOS Box”-program. 

Download Dos Box: https://sourceforge.net/projects/dosbox/ 

    
I recommend downloading Sprott’s book text. It contains much more wonderful inspirations which I 
cannot present in the frame of this paper. 


