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Helmut Heugl

The necessary fundamental algebraic competence
in the age of CCCCCCCComputer AAAAAAAAlgebra SSSSSSSSystems

In the same manner as we discussed  the necessary numeric fundamental competence when we
introduced the numeric calculator in the Seventies, it now becomes vital to explore the
algebraic fundamental competence . This lecture will deal with these questions partly only by
formulating new questions but I will also try to give first answers based on the experience of
the Austrian CAS projects.

1. The situation at the beginning of the CAS-age

In the middle age there existed a honorable guild, the guild of “calculating masters”.
They died out when people became able to calculate themselves. Will the math teachers
also die out in the age of CAS?

The progress of the humanity is documented by  her tools . Tools, on the one hand, are
results of recognition and on the other hand new recognition is not possible without
tools. [Claus, 1990, p 43]

In the 17th century Leibnitz tried to invent a calculating machine because “for human beings it
is unworthy like slaves to lose hours by doing stupid and monotonous calculations”.

But looking at math lessons or tests, calculating skills are still dominant.

In the didactic literature one can find dubious arguments, like [Köhler, 1995]:

Calculating
• supplies math education with necessary materials for practicing
• makes a feeling of success possible also for the weaker students
• relieves teachers and students.

Or another argument which I found in an didactic article:
Technological progress causes the disappearence of routine exercises which brought a feeling
of success for weaker students by practicing hard.

My opinion is: It is senseless to hold on to senseless tasks or goals because they give weaker
students a feeling of success. This is a danger for the subject of mathematics  because people
would look for more sense in other subjects as you can see in articles in Austrian newspapers
titled “Environment instead of mathematics”.
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My first thesis:

Thesis 1: In the CAS-supported math education it is also possible or even more easily
possible to find routine exercises suitable for more meaningful goals and to
automate skills which give weaker students a feeling of success.

He who holds on to the dominating of calculating skills should  look at the history of
mathematics. A main goal of mathematics always was to develop schemes and algorithms
which make lengthy calculations obvious, that means to automate unnecessary mathematical
activities or in other words, to trivialize. Progress in mathematics means creating free
capacities by automatism for more important activities on a higher level. Tools always play an
important role in this process..

As the results of our CAS projects and the developed didactic concepts show, mathematics in
the age of CAS does not necessarily mean uncomprehending work with black boxes.
Especially the White Box/Black Box principle demands at first a white box phase in which the
algorithm is developed also trying to understand the process. and in which the learners have to
acquire certain fundamental manual calculating skills. Only afterwards operating is done by
the CAS as a black box. The CAS plays an important role in both phases: In the white box
phase as a didactic tool to help the learners to make the box “white” and also as a controlling
tool ,  in  the black box phase as a calculating tool and as a tool for testing and interpreting.

But the theme of my lecture is not only manual calculating competence. Fundamental
algebraic competence is more than calculating, but the main change is the change of the
importance of calculation competence.

The tool computer forces us to think about problems  which we had to think over a long time
ago [Schubert, 1994].

2. Important elements of fundamental algebraic competence

To begin with, I must confess that I have no answer to the often posed question: „Which
minimal algebraic competence is indispensable?“ It has been shown in many discussions that
at least the average of all absolutely necessary calculating competences is empty. We first
have to ask ourselves what the educational value and the goals of  the subject mathematics are
and then consider the question of partial algebraic competence. As this discussion would go
beyond the scope of this conference, I have  based my thoughts concerning the grander picture
of mathematics on the following definition by Bruno Buchberger

Mathematics is the technique, refined throughout the centuries, of
problem solving by reasoning

Let us now turn to those competences which, in my opinion, are important:
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2.1 The competence of finding terms or formulas

Of the three phases of the problem solving process, modelling—operating—interpreting, the
operating phase has always dominated. The tools of CAS now make it possible to more evenly
distribute the importance of the three phases. This means that developing formulas gains more
importance in comparison to calculating with terms.

The activity often is a brain activity by remembering an earlier learned formula or knowing
where the needed formula could be found.
This  competence also demands abilities of other areas of mathematic activity like competence
in geometry for deriving geometric formulas or the important competence of translating a text
into an abstract formula.

The translation process from the  student´s language into the language of mathematics mostly
takes place in three steps:
Step 1: A sentence in the colloquial language
Step 2: A “word formula”
Step 3: The symbolic object of the mathematical language

Didactic concepts which support the acquisition of this competence could be taken from
language subjects, e.g. creating a dictionary for translating from German into mathematics.
Example: The sentence “vermehre um p Prozent” is translated into “.(1+p/100)”

The influence of CAS:

• The CAS allows the students to transform the word formula directly into a symbolic object
of the mathematical language  by defining variables, terms or functions or writing
programs.

• The CAS allows a greater variety of prototypes of a formula and also offers some which
were not available before. While in traditional mathematics education often only one
prototype is available and used, now the CAS offers several prototypes parallely in several
windows. This fact causes a new quality of mathematical thinking. We name this
mathematical activity the “Window Shuttle Method”

• The CAS offers and allows a greater variety of testing strategies, in this case testing if the
formula is suitable for the problem and mathematically correct.

Example 2.1: A financial problem
One takes out a loan of K=$ 100.000,- and pays in yearly instalments of R=$ 15.000,-.
The rate of interest is p=9%. After how many years has he paid off his debts?

In traditional mathematics education such problems could be solved for the first time in 10th

grade, because the students need geometric series and calculating skills with logarithms. The
computer offers a new model, the recursive model. From that pupils now work such problems
in 7th grade

The first step is finding a word formula, which describes what happens every year:
Interest is charged on the principal K, the instalment R is deducted.

Translated into the language of mathematics:
Knew = Kold*(1+p/100) - R
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After finding a formula in the phase of modelling operating is the next activity. Using a CAS
calculating takes on a new meaning. The TI-92 offers a special way to come to a better
understanding of a recursive ( or better an iterative) process: The activities of storing and
recalling make the pupils conscious of the two important steps of a recursive process:
Processing the function and feedback (Knew Y Kold) (figure 2.1). Looking at the list of values
the quality of an exponential growth becomes much clearer than by calculating with
logarithms. The typical problem of paying in instalments can be recognized: During the first
phase the loan is nearly equal because the greatest part of the instalment is used for the interest
(figure 2.2). The experimental solution is obtained by repeated usage of the enter-key until the
first negative value appears (figure 2.3). The variable n shows the number of the years.

figure 2.1 Figure 2.2

figure 2.3

In this learning phase the pupils should explore the fundamental idea of a recursive process by
experimenting and working step by step. We call such a phase White Box Phase, a phase of
cognitive learning.
By using the Sequence Mode in the next learning phase - the Black Box Phase – a new
prototype of the formula is available (figure 2.4). The learners can easily experiment with
several rates of interest and installments. Simulating is done by the CAS. The students have to
find a suitable model and to interpret the results, either the table or the graph (figures 2.5 and
2.6).

figure 2.4 figure 2.25
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figure 2.6

Another way of finding a formula for this financial problem is the traditional way  of using
one´s knowledge about geometric series. This way also needs a higher competence of
calculating , because a more difficult equation has to be solved and knowledge about
logarithms is necessary.

Example 2.2: First experience with the function concept in the 7th grade: Direct - indirect
proportion

This example is part of an investigation, called „observation window“ in the Austrian CAS
project [Klinger, 1997]. The goal was to observe the pupils´ behavior: The learners should
choose a prototype of a function suitable for a given problem and they should discover and
use strategies for the proof of a definite functional relation.

The initial problem for indirect proportions was rather simple:
The distance between Vienna and Innsbruck is 500 km. Calculate the driving time for
several mean velocities.

After calculating the time for velocities in the given table the pupils had to find a formula. The
TI-92 offers several possibilities:
• Using the y-Editor. This prototype offers the approach to other prototypes such as the

Table or the Graph (figure 2.7 to 2.9).
• Defining the Formula in the Home Screen. This way opens several possibilities of

calculating (figure 2.10 and 2.11)
• The Data/Matrix Editor offers the strategies used in Spreadsheets.

figure 2.7 figure 2.8
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figure 2.9 figure 2.10

figure 2.11 figure 2.12

Some results of pupils´ behavior:
Pupils use the possibility of having several prototypes of the function parallely at their
disposal. Shuttling between several prototypes becomes a common practice and allows them
to use the advantages of certain prototypes.
Several pupils develop preferences to several prototypes. In traditional math education, the
table often is the only prototype which is at their disposal.  I did not expect that pupils of the
7th grade to also use the graph and the defined function (see figure 2.10), the last one is
prefered by more gifted children.
It is not only easier now to get tables, the opportunity to calculate with whole rows is the main
importance of function prototypes in the Data/Matrix Editor.
The testing strategies strengthen the decision competence according to the type of the
function.
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2.2 The competence of recognizing structures and recognizing
equivalence of terms

This competence is necessary when developing a term, when deciding upon or entering a
certain operation and also when interpreting or testing. This competence has always been of
great importance as research, such as that of Günter Malle, has shown us that the most
commonly made mistakes during algebraic operating are those of recognizing structures.

Recognizing equivalence of terms which the learners have developed or recognizing results of
calculations done by the CAS is a part of the competence of recognizing structures.

A prerequisite for this competence is the knowledge of basic algebraic laws. Such decisions
cannot be done successfully by using the CAS as a black box without this mathematical
knowledge.

The influence of CAS:

• When using a CAS the first step, the input of an expression, needs a structure recognition
activity.

• Using the CAS as a black box for calculating a recognition of the structure of the
expression is necessary before entering the suitable command. Blind usage of commands
like factor or expand is mostly not successful.

• The learner must interpret results and recognize their structure which he himself did not
produce.

• The individual results of various students doing experimental learning must often be
checked for their equivalence.

• CAS sometimes produce unexpected results and students do not know whether they are
equivalent to their expected results or whether they differ.

Example 2.3: New goals for working with traditional complex expressions [Böhm, 1999]

In traditional mathematic school books  one can find such complex terms for practicing
manual calculations. Using a CAS like the TI-92 or Derive the new goal is structure
recognition when entering the expression (figure 2.13 And 2.14). Especially the linear entry
line demands this competence.
The calculation is done by the CAS as a black box (figure 2.14 And 2.15). We think that the
competence of manual calculating such a complex expression necessary in the age of CAS.

figure 2.13
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figure 2.14 figure 2.15

Example 2.4: Better understanding of formulas by experimenting with CAS

Formulas like (a+b)2=a2+2.a.b+b2 are derived by calculating areas of squares and rectangles.
The next step is practicing, i.e. recognizing the structure of a term and applying the suitable
formula.
The role of CAS is primarily a testing tool and not a calculating tool. At first pupils have to
work with pencil and paper.

The following tables were given to the pupils. The goal was not only to find the binom but
also to recognize the structure. They also had to discover wrong examples like in line 4 and at
last they had to invent their own example (figure 2.16):

Given term square of a binom Formula
type

x =
x2 =

y =
y2 =

2.x.y =

4g2 + 12g + 9
(1)  (x+y)2

(2) (x-y)2

25 - 20b + 4b2

D2 – 8d.r + 16r2

4a2 + 4a.b +4b2

4p4 + 4.p2.q3  + q6

figure 2.16
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After having completed this worksheet pupils could use the TI-89 or TI-92 for testing (figure
2.17 )

figure 2.17

The next step was completing formulas. Given were tables like the following one:

Given a = b = c = the completed formula

4.x2 + a + 25 = (b + c)2

figure 2.18

Pupils did not use the calculator. After having solved the problem by pencil and paper, they
experimented with the calculator. They substituted the supposed expressions using the
with-operator. The reaction of the TI-92 (figure 2.19 ) and the TI-89 (figure 4.20 ) is quite
different: The TI-89 immediately gives the answer „true“, the TI-92 shows the changed
equation.

figure 2.19 figure 2.20

Independent of the calculator type pupils had to explore and to use testing strategies after
having a supposition for the wanted variables:

Use the with-operator and
• expand one side of the equation
• factorize one side of the equation
• calculate the difference of the both sides

Example 2.5: Comparison of transformation strategies for solving equations

Pupils can compare the effectiveness of different solution strategies and find their individual
strategy. The decision concerning a certain strategy needs the recognition of the structure of
the terms.
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figure 2.21 figure 2.22

figure 2.23

As seen in figure 2.23, the student is able to recognize the ineffectiveness of incorrect
strategies, which he probably would not have recognized when working on paper. On paper
the equation 3.x=12 might be improperly solved by using the strategy of subtracting 3 on both
sides, resulting in the incorrect assumption that x= 9; working with CAS the student would
discover that 3.x-3 =9, a step which is not a real contribution to the situation.

Example 2.6: Riemann sums

Calculate the definite integral Ix2dx taken from a to b by using the definition of the definite
integral. Compare three ways: „midsums“, „lower sums“ and „upper sums“. Make at first a
sketch and test the result with the formula of the definite integral for a= -2 and b=4. Use also
the TI-92 as a black box for testing (12th grade)

Way 1: Midsums

The expected result is b3/3 - a3/3 but the CAS offers a quite different result as you can see in
figure 2.26. The best way to come to the expected result is a structure recognition which leads
to the decision to use the expand-command

figure 2.24 figure 2.25
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figure 2.26

2.3 The competence of testing

Ever since math has been used as a problem solving technique, it has been necessary to
corroborate the correctness of  the solutions  and to interpret them. The teacher has to offer the
learners testing strategies or make them able to find some themselves.

In traditional mathematics education testing means activities like substituting numbers, trying
another way of solution, checking the usefulness of the mathematical solution for the applied
problem, remembering the definition of a concept a.s.o.

A central result of our CAS projects is a more experimental and independant learning process,
whereby the expert is not so much the teacher as the CAS. This means that testing becomes
even more in important. The stronger emphasis on modelling and interpreting also demands a
higher competence in testing.

The influence of CAS:

• The CAS enables the learner to carry out tests both more effectively and quickly.
• Completely new possibilities are available as far as algebraic and graphic testing are

concerned
• Using CAS causes a new problem: The learner has to examine and to interpret results

which he himself did not produce. The expectation of the sort of the solution or the form
of the algebraic term sometimes differs  between the learner and the machine.

• The variety of paths leading to solutions and therefore the number of different results
increase dramatically. One will not often find the “algorithmic obedience” of the classical
math classroom, in which the majority of the students simply imitate the strategies
presented by the teacher. Therefore the equivalence of the numerous results has to be
tested.

• The more applied mathematics which we see in the CAS-classrooms demands more
testing of the correctness of the model, testing of the usefulness of the mathematical
solution according to the given problem and testing of the influence of parameters.

Due to the growing importance of testing , new strategies are necessary which show the
learner how to make use of the potential possibilities of the CAS. All those who fear that the
use of the computer will lead the learner to experimenting with black boxes without the
faintest comprehension of what he is doing should realize that in order to carry out an activity
on the computer, the learner must, very definitely, have a grasp for algebra and the underlying
algorithm. In fact he needs a wider comprehension than if he were to do the problem by hand.
A coincidental trial and error method would not be successful.
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Example 2.7: Interest is paid on the capital k at the percentage rate p (7th grade)
Determine a formula for the new capital after one year

Pupils found several formulas, some of the results were wrong (figure 2.27 and figure 2.28)
.

figure 2.27 figure 2.28

Now it was necessary to find strategies to prove the correctnes and the equivalence of the
terms.

Strategy 1: Using the algebraic competence of the TI-92
After entering an expression in the Entry Line, the TI-92 produces entry/answer pairs.
The answer is the simplified version of the entry term, normally simplified by
factorizing. When the pupils compare the factorized answer terms they find out, that
the terms te1, te2 and te3 are equivalent. They were not sure whether te4 is also
equivalent, but it is rather sure that te5 and te6 are not equivalent to te1, te2, te3 (figure
2.28).

Strategy 2: Using the difference of the terms

figure 2.29

If the result is 0, pupils recognize that the terms are equivalent. Building the difference
of te1 and te7 one can see, the terms are not equivalent.



13

Strategy 3: Using equations

figure 2.30

If the answer is „true“, the equation is soluble for all numbers of the domain. So the
pupils know the terms are equivalent. In all other cases the equation is only soluble for
certain values and therefore the terms are not equivalent.

Strategy 4: Looking for a factor

figure 2.31

If the quotient of two terms is 1 they are equivalent.

Strategy 5: Substituting numbers
This traditional strategy can now be used more easily because calculation is done by
the CAS

The following example comes from 11th grade. In addition to the algebraic problems new
subjects e.g. the derivation of complicated functions bring new problems. Using CAS for
more complicated operations allows the learner to solve interesting problems  of applied
mathematics and also to find new strategies for testing.
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Example 2.8: Planck´s radiation formula - surprises by using the strategy of substitution
[Dorninger, 1988]

As you can see in figure 2.32 the emission e of a black corpus is a function of the wavelength
8. Determine the maximum value of the function.

figure 2.32

Pupils decided to use several ways of finding a solution:

Way 1: The derivative of e with respect to 8 is a very complicated expression (figure 2.33).
Not the whole expression can be seen on the screen of the TI-92. A commonly used strategy is
the substitution of a partial term. In this case the exponent is substituted by the variable x.
Thus the first derivative is a function with respect to the variable x (figure 2.34)

figure 2.33 figure 2.34

Way 2: Some pupils decided to substitute before differentiation. They had to look for the 1st

derivative of a function e(x) (figure 2.35)

figure 2.35 figure 2.36
When several groups compared their results they realized that they were not equal. Looking
for the reasons they decided to determine the factor so that the solution of way 1 multiplied
with this factor is equal to the solution of way 2. (figures 2.37 and 2.38). Now a discussion
started about the meaning of this factor. By remembering the theory and by experimenting
with the CAS they discovered: The factor is the „inner“ derivative of 8 with respect to x.
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figure 2.37 figure 2.38

2.4 The competence of calculating

Before discussing what sort and what extent  of competence is necessary for the students to
have we might first define what calculation competence is:

Definition: Calculation competence is the ability of a human being to apply a given
calculus in a concrete situation purposefully.

Seriously we should distinguish between calculus and algorithm. But this short lecture does
not allow a deeper discussion of these concepts.

Briefly we can say:
Calculus ] a system of rules
Algorithm ] a  certain succession of operations (application of rules)

In 1995 there was an interesting conference in Wolfenbüttel in Germany, entitled
“Calculating Skills and Generation of Concepts”
This title  is therefore so well chosen. I agree with H. Hischer´s thesis in the keynote lecture
that these two components a re not separable:

A mathematical concept arises only in a communicative situation by
establishing relations on the one hand between objects on a so called level
of experience and on the other hand between symbols on a level of
calculation [Hischer, 1995].

One  consequence is the following

Thesis 2: For mathematics to develop within a learner a certain calculation
competence is needed.

We cannot completely leave the calculations to the computer as a black box.
In the age of CAS we have to distinguish between calculation competence and manual
calculating skills, because calculation competence could also mean being able to decide on the
suitable algorithm and to delegate the execution to the computer.

Another point of view:

Richard Skemp [Skemp, 1976]  distinguishes between relational understanding and
instrumental understanding (or shortly between understanding and skills):
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Instrumental understanding: Mathematical usage of rules when solving problems
without necessarily knowing why the rule is valid.

Relational understanding: The ability of deriving rules, interpreting and possibly
proving, to see them as rules in a net of concepts
(“knowing both, how to do and why).

This point of view leads to some questions:

Question 1: Is instrumental understanding a prerequisite or a support for a higher
level of relational  understanding?

Question 2: Does relational understanding support the necessary skills of instrumental
understanding?

The influence of CAS:

• A shift in emphasis from calculating skills to more conceptual understanding, to more
modelling and interpreting.

• A shift from doing to planning.
• A reduction of the complexity of manual calculated expressions.
• A shift from calculation competence to other algebraic competences, like structure

recognition competence or testing competence.
• A better connection between the formal aspect of mathematics and the aspect of contents.

By that I did not give the answer to the central question:
What is the fundamental calculation competence?

 0r formulated with the striking words of W. Herget [Herget, 1995]:
“How many term transformations does a human being need?”

(1) I am convinced that there is no unequivocal answer to this question.
The answer depends on the context in which this calculation is needed. Calculation
competence should not be an end in itself it depends on the mathematical contents.
An example:
We discussed the necessity of the “p-q-formula” for  solving quadratic equations. My
opinion was it would not be necessary. The competence of factorizing or visualizing
the term is more important for the goals of this chapter and in the Black Box phase of
learning factorizing could also be done by the CAS. But another member of the
discussion group replies: I need this formula because I need the discriminant  in
geometry when I will derive the condition of tangency for conic sections.

(2) In the age of CAS the answer is a connection between two aspects
• manual calculating skills which are necessary for calculating simple expressions

and for the other algebraic competences like the competence of finding formulas,
testing or recognizing structures and

• skills of using the actual algebraic calculator efficiently.

I will give some more answers to the questions of this topic in chapter three where I will
present some investigations of our CAS-Projects, especially the Project II, the TI-92 project
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2.5 The competence of visualizing

A special quality of mathematics is the possibility of graphic representation of abstract facts.
Visualizing was also important in traditional mathematics education but it was not easy to get
the graphic prototype of a concept or a function. Apart from free hand drawings, it is difficult
to develop graphs without using a computer. Finding the most important points and
characteristics of functions in order to be able to draw the graph is the main goal of discussion
of curves in analysis.

The influence of CAS:

• CAS allows the learner  to get the graph faster and more directly.
• Other prototypes of a concept or specially a function are also available much more easily,

like a table or lists of values or matrices in a Data/Matrix editor.
• The CAS allows the learner to use several prototypes parallely, while in traditional math

education only one prototype was given e.g. the term and it was hard work to get other
prototypes like the graph or a table. Now the given term allows the pupil to draw the graph
directly by entering the command graph and deciding on a suitable window area.

• The learning process consists of shuttling  between several prototypes that means shuttling
between several windows. Therefore we call this didactical concept the Window Shuttle
Method.

• These facts also allows to solve algebraic problems graphically.

Example 2.9: Graphic solution of an unequation. Solve the equation
*x - 2* - 1 < x/3 + 1

The solve-command does not help the learner to find a solution (figure 2.39). Graphic solution
means to comprehend  the left and the right side of the unequation as functions (figure 2.40),
to draw them and to look for the intersections in the graphic window (figure 2.41). These can
be found by calculating  when using the CAS as a black box or by experimenting or walking
along the graph by using the Trace-mode.

figure 2.39 figure 2.40



18

figure 2.41

2.6 The competence of working with modules

Using modules is not new for the learners. Every formula used by the pupils can be seen as a
module e.g. Hero's formula for the area of a triangle or the use of the cosine rule in
trigonometry. Knowing such a module means that the student has a model for his problem but
when using this module he has to do the calculation himself.

The influence of CAS:

• The computer, and especially CAS, opens a new dimension of modular thinking and
working. By defining or storing parts of a complex expression as a variable, students can
simplify the structure of the expression making it more comprehensible and they can
calculate with such modules.

• One weak point of the TI-89 and TI-92 promotes and strengthens the use of modules as
new language elements: the small screen. More complex expressions cannot be totally
seen on the screen and therefore operations with such expressions become confusing. So
the structure of such operations is more comprehensible and clearer if students use the
name of the expressions instead of the expressions themselves.

Example 2.10: Solving systems of equations. Discovering algorithms like substitution
method, Gauss algorithm a.s.o.

Watching our students from seventh to tenth grade in the White Box phase of learning we
observed three steps of abstraction:

Step 1: Working “into the equations” as in traditional math education.
Step 2: Working “with the equations”.
Step 3: Working “with the names of the equations”, that mean working with modules.
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Step 1: In traditional math education students have to work „into the equations“. They
have to do the calculating  themselves:

(I)  3.x - 2.y = 12*+2.y
(II) 7.x + 2.y =  8
_______________________

(I)  3.x = 12 + 2.y*:3
(II) 7.x + 2.y =  8
_________________________

(I)  x = (12 + 2.y)/3
(II) 7.(12 + 2.y)/3 + 2.y = 8*.3
_____________________________

(II) 84 + 14.y + 6.y = 24*-84

(II) 20.y = -60*:20

(II) y = -3

a.s.o.

Step 2: Using CAS students can work „with the equations“. Calculating, substituting and
using algorithms to solve the single linear equations, which they learned in former
White Box phases, is now done by the computer as a Black Box. Students have to
decide on the operations, the CAS have to do them (figure2.42).

figure 2.42

Linear systems of equations in ninth grade

Step 3: In our project where we observe students who are familiar with the CAS we found
out that the operations are not carried out with the equations but „with the names
of the equations“ which the students had defined as new elements of the
mathematical language.

Using the idea of the Gauss algorithm to find out the Cramer rule.

After storing the equations as named variables students can use the names to form suitable
expressions. The next step is to speak about strategies in their colloquial language and to



20

translate it into the mathematical language. E.g.: „We have to multiply the first equation with
a22 and the second equation with -a12 and have to add the two equations. After that we have to
solve the new equation for the variable x1 and so on.“

At first for a better understanding of the several calculating steps it would be better to separate
the particular steps:

Word formula Abstract expression

Multiply the first equation with a22 and the second equation
with -a12 and add the two equations.

a22.equ1 + (-a12).equ2

Store the new equation with respect to the variable x1 in the
variable equ2n

a22.equ1 + (-a12).equ2YYYYequ2n

solve the new equation for the variable x1 solve(equ2n, x1)

figure 2.43

Students having more experience with using CAS and especially the more talented students
more and more prefer to translate the word formula of phase 1 into one abstract expression:

Multiply the first equation with a22 and the second equation
with -a12 and add the two equations. Now solve the new
equation for the variable x1

solve(a22.equ1 - a12.equ2, x1)

figure 2.44

figure 2.5 figure  2.46

This result shows a new quality of mathematical thinking caused by CAS (figure 2.44). The
tool of CAS does not only support cognition, it becomes part of cognition.
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2.7 The competence of using the chosen CAS

Besides the actual mathematic contents I now have to additionally
concentrate on skills which are necessary when using the calculator.

This statement of one of our students shows the necessity of the “computer-using-
competence”.

The influence of CAS:

• The use of CAS causes additional demands and problems for the students. The operation
of the electronic tool needs additional skills which also have to be practiced as calculation
skills.

• The evaluation of our last project shows that the measured growing joy and interest in
mathematics is significantly higher by those pupils who have no problems with the
operation of the computer.

• Another significant result is the gap between boys and girls. Both groups show a growing
joy and interest in mathematics but boys significantly more than girls. Girls more often
observe to have problems with the operation of the calculator.

• The necessary commands, operations and modes have to be offered to the students in
small portions. Practicing and repeating in regular intervals are necessary.

• The use of CAS as a Black Box for problem solving demands an agreed documentation of
the way of solution, especially in the exam situation.

Some handling skills which are necessary for the fundamental algebraic competence when
using a TI-92:
• Input Y recognizing the structure of the expression.
• Storing and recalling variable values.
• Most important commands in the algebra menu are factor, expand and solve.
• Substituting numbers, variables and expressions.
• Setting modes which are necessary for algebra, like the decision exact/approx.
• Defining functions for graphing, displaying Window Variables in the Window Editor.

Using Zoom and Trace to explore the graph.
• Generating and exploring a Table, Setting Up the Table Parameters.
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3. Some results and answers to the topic coming from the
Austrian CAS-Projects.

 3.1 Investigation of the impact of the TI92 on manual calculating skills
and on the competence of reasoning and interpreting.

This investigation was part of our 2nd  CAS project, the TI-92 project, and was carried out by
Walter Klinger and Christian Hochfelsner [Klinger,1998].

Framework

Participating classes of the 7th grade with a total of  653 pupils:

Project classes1) Control classes2)

Gymnasium3) 1 9

Realgymnasium3) 8 8 (1 Derive class)

1) Every pupil is equipped with a TI-92 which is used in every learning situation,
during the lessons, at home and in the exam situation.

2) Classes with traditional mathematics education. Every pupil has a numeric
calculator like a TI-30. Exception: The Derive class, a CAS class where every
pupil has Derive available.

3) Gymnasium and Realgymnasium are college preparatory high schools, beginning
with 5th grade and lasting 8 years. The Gymnasium is more language-oriented with
3 math lessons a week, the Realgymnasium is more science-oriented with 4 math
lessons a week

Description of the test

The core of the test comes from Prof. G. Malle from the Klagenfurt University [Malle, 1986],
example 6 was substituted by 2 new examples . Especially new is the row for written
reasoning.
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Worksheet: Test your algebraic competence

Name: ...................................................................... Class: ............
Calculate the given examples and describe verbally the way of solution. Use
mathematical  concepts and arguments.

Calculate Describe your way of solution
Example 1: 6a.3b – (5ab + b.2a)=

Example 2: 4.(3a+5)–(4a-7).3=

Example 3: x2y2(xy)2=

Example 4: (a2-3b).(-3a+5b2)=

Example 5: 2a – a/3

Example 6:
Complete

(.. - 7x)2 = .. – 56xy + ..

Example 7:
Correct

(-2b2 + 3b)2 = 4b4 + 12b4 + 9b2

figure 3.1
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Procedure
This test should be given in the first lesson following the summer holidays.
No aids may be used during the test.
The test should take no longer than 25 minutes.

Most of the classes followed the proceedings, but nevertheless it is impossible to prove if all
the pupils actually took the test in the first lesson following the holidays without any review
sessions beforehand.

Method of evaluation:
The test was corrected by the math teachers according to the following criteria:

Calculating skills: correct – false - answer not given
Interpretation competence: excellent/good - poor/false - answer not given.

Due to the individual correction of the teachers there is a certain amount of uncertainty
concerning the evaluation of the interpretation competence. The authors of the investigation,
however, share the opinion that this has no major effect on the total results of the test as these
irregularities are balanced out in the end.

Goals of the investigation:

• Investigation of the instrumental understanding as well as the relational understanding.
Looking for the answers  to the two questions which I formulated in chapter 2.4
(calculation competence):

Question 1: Is instrumental understanding a prerequisite or a support for a higher
level of relational  understanding?

Question 2: Supports relational understanding the necessary skills of instrumental
understanding?

• Survey of the impact of the TI-92 used as a teaching and didactic tool on the manual
calculating skills of students in the third form of the Austrian High School  (13-14 year old
pupils)

• Survey of the impact of the usage of an algebraic pocket calculator on the competence of
reasoning and interpreting.

•  Discovery of which areas and under which circumstances the usuage of the TI-92 as a
didactical tool makes sense

Before the tests were carried  out the following hypothesis were assumed:

Hypothesis 1:
The classes using TI-92 will show fewer skills in manual calculating and will have a
much better competence in reasoning and interpreting.

Hypothesis 2:
Using the TI-92 as a didactical tool especially when applying formulas or finding
mistakes  will have positive effects.
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3.1.1 Interpretation of the manual skills

The overall test results show a rather disillusioning picture of the basic calculating skills of
pupils , in the third form 7th grade. Fewer than half of the examples were solved correctly by
the tested students whereby the difficulty of the first five problems is certainly not at a very
high level, one could say these 5 examples are tests of the fundamental calculation
competence which is also necessary in the age of CAS.
The sixth problem was a standard example taught in 7th grade and only the seventh problem
demanded higher algebraic skills . It is safe to assume that these skills might not have been
trained in this manner in all the test classes. Only 15% of the tested students were able to
solve this problem correctly.
It must be pointed out that the test was carried out in the first lesson of the academic year, the
students just having returned from summer holidays and in most cases not having had the
opportunity to review the skills before sitting the test.

The pupils of the Realgymnasium who were not using an algebraic calculator showed
the highest percentage rate of correctly solved problems (50.8%), followed by the project
classes (44.8%) and at last the pupils of the Gymnasium  with 41.7%.. The pupils of the
one DERIVE class were able to solve 50.2% of the examples correctly.

The difference between the results of the pupils in the control classes of the Realgymnasium
classes and those of the project classes is indisputable, the former being able to solve 6% more
of the examples correctly. Although it is not possible to determine how often the TI 92 was
used as a didactic aid in the White Box phase it must be assumed that the calculating skills
were left to be done by the TI 92 as a Black Box, especially in the Black Box phase.

On the other hand it is remarkable that the project classes have a better result than the classes
of the Gymnasium

First Conclusion:
The first part of hypothesis 1 seems to be confirmed! Manual calculating skills
are reduced when using an algebraic calculator !

However, the following questions still remain to investigated and answered:
• Have the pupils of the project classes gained other basic skills through the usage of this

didactic tool, such as techniques to compare terms, techniques of substituting a.s.o, in
other words, skills which are necessary for the other fundamental algebraic competences.

• Can any advantages be seen in modelling and interpreting among the pupils of the project
classes?

• Have the pupils gained a different understanding of term structures?

Please see the graphs for a more detailed interpretation of the results of each individual
example.
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Explanation:
Vergleichsklassen RG ] Realgymnasium classes with traditional math
education
Vergleichsklassen G ] Gymnasium classes with traditional math education
Vergleichsklasse RGI ] Derive class

Correctly solved problems (Example 1 to 7)
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Missing problems
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More than 20% of the project classes did not solve the fifth problem and problems 5, 6 and 7
were often left unsolved by the pupils of the Realgymnasium. Exactly why these problems
were left out, remains unclear.

3.1.2 Interpretation of the competence of reasoning and  interpreting

This competence requires a much deeper understanding of fundamental algebraic activities.
Now it is not simply a matter of carrying through a certain calculation, but rather reflecting
about the application of fundamental activities.
We did not expect the number of correct reasons to exceed the number of correctly calculated
examples and it was seldom the case that the reason was correct, the math result incorrect. In
some cases we found that in spite of well founded reasons calculation mistakes were made.
Generally it can be said that correctly solved problems were often correctly interpreted
whereas wrongly solved examples showed poor, incorrect or no verbal interpretations.

The project classes (8 out of 9 classes were evaluated) show the highest percentage of
correct reasons and interpretations (40.7%), followed by the 7 RG classes and the 5 NG
classes with 30.9% and 23.6% correct proofs respectively. The DERIVE class was not
evaluated.
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Correct reasons

������
������
������
������
������
������

�����
�����
�����
�����
�����
�����

����
����
����
����

�������
�������
�������
�������

������
������
������

������
������
������
������
������

�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����

��������
��������
��������

�������
�������
�������

������
������
������
������

�����
�����
�����

�����
�����

����
����
����
����
����

��������
��������
��������
��������

�������
�������

������
������
������

�����
�����

�����
����� ����

Begründungen richtig

0,00%

20,00%

40,00%

60,00%

80,00%

1 2 3 4 5 6 7

Beispiel Nr.

�����
����� Projektklassen�����
�����

Vergleichsklassen RG�����
����� Vergleichsklassen G

Reasons not correct or wrong

�����
�����
�����
�����

����
����
����
����
����

��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

����
����
����
����
����

��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������

������
������
������
������

�����
�����
�����
�����
�����
�����

��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

������
������
������
������
������
������

������
������
������
������

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

Begründungen mangelhaft/falsch

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

1 2 3 4 5 6 7

Beispiel Nr.

������
������ Projektklassen������
������ Vergleichsklassen RG������
������ Vergleichsklassen G



29

Missing reasons
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3.1 3 Comparison of calculating skills to reasoning competence

This result is even more striking when we put the percentage of reasoning in relation to the
number of correctly solved math problems. This relative value only shows the percentage of
correctly solved and correctly interpreted  examples but does not tell us anything about the
relation between incorrect calculation and correct interpretations or vice versa.

This percentage  is quite high in the project classes: Approx. 90% of the correctly solved
examples were also correctly interpreted In the Realgymnasium  classes the relative
value lies at 60.8 % and in the Gymnasium classes at approx. 56.6%.
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These results open up various interpretations and questions:
• Was more value placed on discussing math in the TI-92 classes?
• Does working with the electronic medium encourage pupils´ willingness to discuss and

argue through math problems?
• Is there a relation between better competence in reasoning and interpreting and deeper

understanding of mathematical correlations?
• How does the competence in reasoning  influence other areas such as argumentation,

testing , modelling, interpreting and approach to open problems?

Second conclusion:
The second part of hypothesis 1 seems to  be confirmed! The changes in teaching
and learning mathematics caused by the use of a CAS support the possibility of
reasoning and describing mathematical activities.

This conclusion, however, can only be drawn if the lesson time which is not used for the
training of manual calculating skills is invested in working for these competences. It must be
pointed out that in the lower grades a calculator should be used as a didactic tool rather than
strictly as a calculating tool. The best CAS command remains worthless if the user can no
longer decide which command he must choose in order to reach a specific mathematical goal.

Effects on the application of formulas and on the analysis of mistakes

To begin with, it should be pointed out that the project teachers tried to intensify the usage of
the TI-92 in lessons of elementary algebra—in the areas of formulas, drills and mistake
analysis. The materials of these „observation windows“ (goals, lesson plans and work sheets)
can be found in the report and on the home page of ACDCA under the „observation windows
of the 3rd form (7th grade)“.

Comparison  of calculating and  reasoning competence in examples 6 and 7
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As can be seen in both, the sixth and the seventh test examples,
the calculating skills of the project classes are the weakest of all the participating
groups:
Project classes: percentage of correct answers to example 6 is 45.5% and to example 7 it
is  12.8%. In the Realgymnasium  49.5% and 16.8% correct answers respectively and in
the Gymnasium classes 33.3% and 16.4% correct solutions to the two named problems.

One possible explanation is that in TI-92-classes such examples are solved by systematical
trial and error on the TI 92  and not “by hand”.

At the same time, the test results show that the project classes produce a relatively high
percentage of correct reasoning:
Project classes: 43.7% and 23.5%; Realgymnasium classes 27.4% and 17.4% and the
Gymnasium  classes 11.3% and 8.5%.

In these two examples the entire percentage of proper reasons in the project classes lies even
higher than the percentage of correctly solved problems.

A first answer to the question 1 of chapter 2.4:
Instrumental understanding is not an absolutely necessary prerequisite for a
higher relational understanding. The ability to give reasons does not
automatically go hand in hand with the ability to calculate.

The seventh example shows a competence in reasoning which is almost twice that of
calculating. On the one hand this is surprising, on the other hand we need to question how
forcefully we should demand this reasoning competence of the pupils in the area of
elementary algebra. A process which often can be explained in a matter of seconds is turned
into a monsterous example if the interpretation is to be carried out in detail. Furthermore we
must remember that not all items of knowledge, especially applied „tool thinking“  really need
to be explained. Often it suffices simply to work by „feeling“ -  a different realm of
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knowledge. A explanation is much more sensible when modelling, argumenting, interpreting
or approaching open problems.

Third conclusion – answer to Hypothesis 2 and Questio 2 of chapter 2.4:
The second hypothesis does not seem to be confirmed! Even systematic,
didactically planned usage of the TI –92 is no guarantee for the improvement of
competences, like completing of formulas or analysing mistakes, if the calculator
is not placed at the pupil´s disposal. An available reasoning competence does not
automatically mean that the proper process will be applied.
Relational understanding does not necessary support the skills of instrumental
understanding. Or in other words: To have relational understanding is not
enough for having instrumental skills.

3.1.4 Correction work using the TI-92

Hypothesis 3:
Using the CAS as a calculating and testing tool the calculation results will be
much better and the competence of reasoning is supported

When grading the test papers in the project classes the answers were simply marked as either
right or wrong, regardless of what mistake and how bad a mistake was. In the following math
lesson the papers were handed back and the pupils were asked to re-do those problems which
were marked as wrong (using a different color pen). The pupils were told to use their TI-92
and to find and mark the mistakes that they had made.

The result:
Many of the pupils were able to find and correct their mistakes with the use of
the TI- 92 and a lot of them were also able to understand their mistakes.

Result of the Question: How many wrong examples could be corrected by a repeated
calculating when the TI-92 was also available  (without a practicing phase between the test
and the correction phase)?
Example 1 2 3 4 5 6 7
Corrected
mistakes

100% 100% 81.8% 70.6% 96% 83% 50%

figure 3.2

Result of the Question: How many wrong examples could be corrected by a repeated
calculating when the TI-92 was also available  and the sort of mistake was recognized
(without a practicing phase between the test and the correction phase)?
Example 1 2 3 4 5 6 7
Corrected
And
recognized
mistakes

100% 62.5% 45.5% 41% 52% 42% 22.7%

figure 3.3

Fourth conclusion:
The third hypothesis seems to be confirmed
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3.2 Changes in the exam situation

Procedure
Model 1:

The TI-92 can always be used. Calculations carried out by the TI-92 have to be
documented. Some agreements about the style of documentation were taken. The
teacher makes clear which examples have to be calculated by hand and which can be
calculated by the CAS. The pupils can always use the TI-92 as a testing tool. For some
examples the use of the calculator is demanded.

Model 2:
The written exam consists of two parts:
Part 1: No calculator is allowed.
Part 2: The CAS is permitted, documentations are needed.

Changes of the style and the contents of the examples
There are fewer changes of the contents noticed but changes of the goals and the style
of the questions. Some observed changes:

(1) “check – compare – test”
Example: Several formulas of a trapezoid were given (expanded, factorized and also
wrong examples). Pupils had to find out which of them  are equivalent and which are
wrong.

(2) Open questions
Example: Given are 2 pairs of numbers (1,40) and (40,1):
a) Find a suitable formula for an indirect proportion
b) Find a formula, suitable for these pairs which is not an indirect proportion.

(3) Reasoning and documenting
Questions like “Explain your assertion” or “”Describe the sequence of the commands
which are necessary for a certain algorithm” can be found.

(4) Structure recognition:
Example: Which keys were activated?

figure 3.4
(5) More often than in traditional math education text problems can be found
(6) The length of the examples was statistically growing.
(7) A trend to experimental working

can be noticed, on the one hand because the question demands it and , on the other hand,
the time which is gained because the calculating is done by the CAS can be used for
testing and experimenting.

(8) Changes in the description of the examples
It is necessary to set when the CAS can be used and when not. Sometimes it is necessary
to demand the prototype which has to be used, like “use a table” a.s.o.
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(9) The CAS as an expert for testing
The students always have their own expert available. The testing competence becomes
very important, practice in testing is necessary.

Final Conclusion

Hypothesis and Questions Answers and Conclusions
Question 1:
Is instrumental understanding a prerequisite
or a support for a higher level of relational
understanding?

Question 2:
Does relational understanding support the
necessary skills of instrumental
understanding?

Hypothesis 1:
The classes using TI-92 will show fewer skills
in manual calculating and will have a much
better competence in reasoning and
interpreting.

Hypothesis 2:
Using the TI-92 as a didactical tool especially
when applying formulas or finding mistakes
will have positive effects.

Hypothesis 3:
Using the CAS as a calculating and testing
tool the calculation results will be much better
and the competence of reasoning is supported

Answer to question 1:
Instrumental understanding is not an absolutely
necessary prerequisite for a higher relational
understanding. The ability to give reasons does not
automatically go hand in hand with the ability to
calculate.

Answer to question 2:
Relational understanding does not necessary support
the skills of instrumental understanding. Or in other
words: To have relational understanding is not
enough for having instrumental skills.

First conclusion:
The first part of hypothesis 1 seems to be confirmed!
Manual calculating skills are reduced when using an
algebraic calculator

Second conclusion:
The second part of hypothesis 1 seems to  be
confirmed! The changes in teaching and learning
mathematics caused by the use of a CAS support the
possibility of reasoning and describing mathematical
activities.

Third conclusion:
The second hypothesis does not seem to be confirmed!
Even systematic, didactically planned usage of the
TI–92 is no guarantee for the improvement of
competences, like completing of formulas or
analysing mistakes, if the calculator is not placed at
the pupil´s disposal. An available reasoning
competence does not automatically mean that the
proper process will be applied.

Fourth conclusion:
The third hypothesis seems to be confirmed
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Based  on the results of our CAS Projects
• I tried to find out a list of needed fundamental algebraic competences. Instead of a

preponderance of the manual calculation competence in the traditional math education we
observe a more equally importance of the listed competences.

• I tried to give answers to the questions about instrumental and relational understanding
and to the hypothesis of our investigation.

• But I have no exact answer to the question about certain necessary  manual calculation
skills in the age of CAS.

Samour Papert had a dream: Just as you learn a foreign language best in a country where it is
spoken you would learn the language of mathematics best in a “mathematic land” and he was
sure that his Logo-learning environment would be such a “Mathematic Land”. Years later we
can say Logo is not the “holy land”

We did not find such a “holy land” when working with CAS, not for the pupils and not for the
teachers, but an interesting learning environment for a

• more meaningful,
• more interesting,
• and more future oriented

Mathematics Education
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