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I would like to present the work I have done in the last few years
devoted to solving  problems on General Physics  (classical mechanics),
with the help of computer algebra.

 These problems  are  usually being solved  during  standard
General Physics  courses, at university level  (engineering and science).
Some of them would  also be suitable for high schools.

Comparing various computer algebra systems (Mathematica, Maple,
Derive, MathCad, Reduce) from the point of view of  the comfort of their
use,  system requirements,  price, applicability to physics specific
problems etc.  I have chosen  the DERIVE.

The result of this work (more than 130 solved problems) have been
prepared for publication.

The majority of  already  published books, devoted to computer
algebra systems use as illustrations purely  mathematical, abstract
problems. Only  few  of them explore  physics problems,  and to my
knowledge no book  similar to the one I have written has been
published yet.

It is obvious that  performing necessary symbolic derivations  with
the use  of  computer algebra system (CAS) reduces dramatically the
time of work and allows  a student (or teacher)  to  concentrate on
physical ideas (which is most important), rather then on very time
consuming technical side - performing the derivations by hand.

Each problem of the book is splited into few section:
(a)   the problem content,
(b) description of the common methods of its solution (by hand)

including all formulae necessary for the solution of the problem,
(c)  the form in which the relations can be entered to the computer
(d)  the view of a screen that after all previous steps and commands

have been done. (In most of problems the picture have been splited
into few pictures to present results more clearly).

In many problems more than one method leading to its solution is
presented. In such cases the last method is the one  which uses the
power of DERIVE on its  highest level.
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The limited  time  allows me to present only few examples from this
book. Therefore I will concentrate on examples in which some
shortcomings of DERIVE appear.

Let us start with  very simple example

Example 1
The trajectory of a moving point is given in the parametrised form:

                                 x Vo t y Vo t
gt= = −cos( ) , sin( )α α    

2

2   .

Evaluate tangential and normal components of acceleration of this point
and the curvature radius of the trajectory.

Solution: We enter:
(a) position vector
(b) velocity vector:
(c) modulae of the velocity:
(d) tangential and normal components of the acceleration and

curvature radius:

In the expression defining an we have used the fact that the total
acceleration is equal to g (this can be easily verified).

Simplification of #4, #5 and #6 (strickly said RHS of #4, #5 and
#6) leads to the results:
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To make   #8 and  #9 simpler (to get rid of modulus) we declare the
domains for Vo, g and αααα. For an we get

Unfortunately  the function  SIGN  still  remains  (#13). However, it can
be easily checked that the argument of SIGN is always  negative
because it is  the  second order polynomial  with no real zeros and
branches going downward. We prove it by solving the equation  #14:

Solutions #15, #16  are complex. We can replace then the function
SIGN with ‘-1’. For an we get:
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Note:
•  Let us notice that that DERIVE 3.11 can not simplify the function

cos( )α  for the declared domain 0<αααα<ππππ/2. This remark is not true
for later versions of the program.

Example 2
Prove the general statement that any central force field is potential.

Solution: The field is potential if  curl of the force field is equal to zero

curlF
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0, , ,         - components of the force.

Central force can be written in the form  

! !
F f r r= ( ) ,

where:
 
!
r  - position vector,
f r( ) - arbitrary differentiable function of the magnitude of the

position   vector.
To prove that the central  field is potential we enter:

and evaluate one by one the components of the curl vector. For the x
component we get:
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We can see, that the result #6 (simplification of #5), is larger than the
width of the window. In this case however  it is enough to use
compressed format mode (see #7) to overcome  this inconvenience.
Under  this mode the DERIVE displays the result #6 in the form #8:

To show that  #8 is zero we have to replace names of arbitrary variables
@@@@7, @@@@8  with  one name, let us say  @@@@8. In this way we get #9, which
simplified results in #10, as expected:

To complete the  prove of the potential character of the examined field,
we
need to do similar calculations for the remaining components of the
field.

Remarks:
•  Unfortunately the assignment of the form a:=  it is not accepted.
•  The later version of DERIVE (v. 4.09) solves the problem.
immediately:
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The vector #6 is the simplification result of #5.

The solution of the problem can be obtained immediately if we employ
spherical coordinates

curlF
r

e e r e r
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θ ϕ

where: F F F f r r g rrθ ϕ= = = =0, ( ) / ( ) 
!

Example 3
A ring is made of  a thin  smooth  pipe  (thin torus). There is a piece of
wire  inside  the pipe which can move  without friction (Fig. 1).  The
ring is rotating with an  angular velocity  ω around an axis  of symmetry
lying in the plane of the  ring. Evaluate and discuss  the equilibrium
positions of the wire for  two cases, when  the length of the wire is
equal:

a) half of the ring,
b) forth of the ring.

Solution: Let us consider the wire element of the length dl. It is
convenient to treat the problem in the non-inertial reference system
connected with the rotating ring. In such system the wire undergoes the
action of two forces, gravitational and centrifugal one. The force fields
are  conservative and can be described by  respective  potentials.
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Fig.1.

The energy of the mass element is the sum of the gravitational potential
energy

dE dmgy gR d dm Rdg = − = − =σ φ φ σ φ2cos ,   ( )

and the potential energy of the centrifugal force:

dE r dm R dc = − = −1
2

1
2

2 2 2 3 2ω ω φ φsin

The total energy is just the integral over  the whole wire which, in our
notation, is represented by the integral over the whole angle Φ0

E dE dEp g c= +
+ +

∫ ∫
Φ

Φ Φ

Φ

Φ Φ0 0

At the equilibrium the energy E p  is extremal. This means that the lower
limit of integration (φ) should satisfy the  condition:

dE

d
p

Φ
= 0

The type of equilibrium follows from  the sign of the second derivative:

d E

d
p

2

2Φ
We enter then the expressions:



8

a)  In this case the length of the wire equals half of the tube length, φo=π
.  Simplification of  #2 returns equation #4. Its solutions are
displayed in #5, #6 and # 7

The angles #5 and #6 describe the equivalent configurations, therefore
for  further calculations we will use only one of them and the  #7.
Entering the expressions:

φφφφ := ππππ/2
SIGN(DIF(Ep, PHI, 2) =

we get #8 and #9, and after the declarations #10, we get #11:

which means that at the angle π/2 the  equilibrium is unstable.
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For the second angle  we  obtain:

so, the equilibrium at the angle  3π/2 is stable.

b) The simplification of the equation #2 but  for  ΦΦΦΦo=ππππ/2 returns the
equation  #15

which is too difficult for DERIVE.  We have to perform some preliminary
calculations by hand. The equation #15 divided by R 2σ  gives  #17:

It is still untreatable for DERIVE. However it can be rewritten (by hand)
in the form  #18

and next in  the form  #21:

The equation splits into two equations:

 sin cosΦ Φ+ = 0or C(cos sin )Φ Φ− =1,
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where C
R
g

= ω2

2
.

For the first of these  two equations we get solutions #23, #24 and #25:

Solutions #24 and #25 denote the same wire position.

For the second equation DERIVE returns solutions #27, #28 and #29

The angles  #27 and  #28 denote the same position of the wire.
Therefore the analysis of the equilibrium type can be restricted to the
angles  #23, #24, #27 and #29
The arguments of  ASIN must satisfy the obvious inequality:

 − ≤ ≤1
2

2
1

C ,   where   C
R
g

= ω2

2 .

which leads to the inequality for the angular velocity ω.
Let us find the  ω :
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We have found the frequencies for which equilibrium states can exist at
the angles  #27, #28 and #29.

We enter the obtained angles and check the  signs of the second
derivatives using matrix notation:

We find the results of simplification  in the rows of the matrix on the
right side of the  equality sign in  #36. In the first column   there  are
the angles  and in the second  column there are  the SIGN functions.

Let us discuss the results.
•  At the angle  ΦΦΦΦ2,  the equilibrium is unstable.
•  At the angles   ΦΦΦΦ3  and  ΦΦΦΦ4  the  equilibrium  exists  if  the condition

#33  is fulfilled and is stable.
•  At the angle ΦΦΦΦ1  the equilibrium is unstable if  the condition   #33  is

fulfilled, otherwise stable.

Example 4
A particle of mass m is moving in the force  field of the potential energy
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 E
m

rp n= −α ,  where α = >cons t 0.

Evaluate the range of  the parameter n for which there exist stable orbit.

Solution: Energy of the particle is the sum of its kinetic and potential
energy

E
L

mr

m

r n
= −

2

22
α

,

where  L is angular momentum of the particle.
The necessary condition for the existence of the stable orbit is that the
total energy, as a function of r,  of the particle has the minimum.
 From the mathematical point of view  the condition can be formulated
as

∂
∂
E
r

= 0 and 

∂
∂

2

2 0
E

r
> .

We enter the data:

 

and the equation  #3

Its simplification  leads to  the equation #4

which we  solve, let us say with respect to the parameter αααα
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We  rewrite #5 in the form of definition #6 (elimination of αααα) and try to
solve the inequality (simplification of #7), DERIVE displays  inequality
#8:

However if we simplify #7 but after the declaration #9 DERIVE returns
the solution #10

Comment:
We have started  the solution procedure from the elimination of the
parameter αααα. We could start  also, for example, from the elimination of L
:

In this case  instead of the solution we get the modified inequality #6:
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The inequality #6 is to difficult for DERIVE. However it can be easily
seen that its solution is n > 2 and  − < <1 0n  (see bellow)

The negative values of n correspond  the  minimum  in the infinity.

Problem 5
The Fourier expansion  is performed by the FOURIER function from the
utility file  DIF_APPS.MTH. Let us suppose that we try to evaluate
Fourier coefficients. Below are the obtained integration results:

( For  m=0 the integral #2 is equal 2¶)

The correct result is ¶*KRONECKER(m.,n)

Example 6
Many physical problems can be solve in the relatively simple way with
the use of the Lagrange equations of motion. For  systems that conserve
energy they have the form:



15

d

d t

L

q

L

qk k

∂
∂

∂
∂"

,− = 0

where L is the Lagrangian, and  q qk k, "  denote the kth generalized
coordinate and the  kth generalized velocity, respectively. The
Lagrangian is the difference of kinetic and potential energy:

L Ek Ep= − ,

If we solve Lagrange equations we should remember that DERIVE will
not accept the differentiation variable "q k . It means that DERIVE does
not accept the notation

DIF( L, DIF(qk(t), t) ).

To omit this inconvenience we enter the empty assignment for the
generalized velocity as a function of time t and additionally we enter new
variable for the generalized  velocity. For  example:

Qkp : = qkp(t) :=
DIF(DIF(L, Qkp), t) - DIF(L, qk) = 0

Letter p represents  the dot sign above the variable.

Conclusion
Comparing various computer algebra systems (Mathematica, Maple,
Derive, MathCad, Reduce) from the point of view of comfort of their use,
system requirements,  price, applicability to physics specific problems
etc.  one can  conclude  that  in despite of the presented shortcomings
DERIVE   is a very satisfactory system, because  of its  efficiency and
comfort of use,  and  low purchase price at the same time.


