Squaring the Circle and Leonardos Vitruvian man

Today I want to talk about

- A mathematical problem, which is about 3000 years old - squaring the Circle
- A 500 years old famous drawing - Leonardos Vitruvian man and
- A classroom experiment using new technological tools - Derive, Cabri, TI92

Two years ago, a friend of mine brought some informations supposing that I was interested. Reading the paper I found this:
„Geometrical secret of Leonardo da Vinci discovered" "Leonardos solution of squaring the circle"
My first reactions were:
„That's impossible, we all know, the problem of squaring the circle has no solution!" „The drawing is 500 years old and nobody discovered this before??"
My feelings wavered between doubting scepticism and „That's unbelievable, I must check it!" But my friend was right: I was interested!!
When in 1998 this book was published, I had a lot of informations to work with:
Klaus Schröer (a mathematic-artist) and Klaus Irle (an art historian) worked together and published this book:

Klaus Schröer/Klaus Irle
„Ich aber quadriere den Kreis ..."
Waxmann, Münster, 1998
ISBN 3-89325-555-9

Leonardo da Vinci

First of all I want to make some remarks on Leonardos life and work.
He was born in the year 1452 in Vinci, that is a little town near Florence in Italy. On invitation of the King of France, he spent the last three years of his life in Amboise in the valley of Loire. When he was travelling from Italy to France in the year 1516 he had in his luggage three paintings, one of it the famous „Mona Lisa". That is the reason why nowadays you can see this painting in Paris (Louvre) and not in Italy.
Hundreds of researchers worked on Leonardos manuscripts and assets. He is one of the best investigated artist in the world. Nevertheless we still have surprising results.

Art and Mathematics

In the last 500 years nobody analysed the drawing under a mathematical point of view! What is the reason?
Between the time of Renaissance and today we have a tremendous change in the conception of art. On Leonardos point of view, the concept of art is connected with rules, exercises and ingenuity. All artistic subjects can be explained with simple mathematical concepts. Today the development of art is associated with the absence of rational thinking. The artist expresses his feelings.
The view on the mathematical message of this drawing was covered with a smoke-screen in a intellectual climate, in which art and mathematics are mutually exclusive.

Squaring the Circle

Squaring the Circle is one of three great problems of Classical Geometry and in the Renaissance the most famous problem of Mathematics. For more than 3000 years
mathematicans have worked on the problem of constructing a square equal in area to that of a given circle.
Whether or not it is possible depends, of course, on what tools you allow yourself. Plato insisted that the problem be solved with straightedge and compass only.
Remark: When Lindemann proved in 1882 that Pi is transcedental he effectively proved that the solution is impossible in a finite number of constructions.
Leonardo expressed several times his intention to write a book about Geometry. In this book he intended to describe various procedures to solve the problem of squaring the circle. But this book was never finished!!

Vitruvian man

(Vitruv, Roman architect, wrote 30 B.C. the book „De Architectura", which influenced architecture in the Renaissance)
In the Internet you can find a lot of Web-Sites with Leonardos drawing, but nearly half of the pictures are reversed. Possibly the authors didn't realize that Leonardo wrote all his texts in mirror-writing!!

In the classroom we made exact measurements and compared this with Leonardos text.
Comparing areas of the square and the circle (center is the man's navel) you can easily see a difference.

Circle: $176.72 \mathrm{~cm}^{2}$ Square: $153.51 \mathrm{~cm}^{2}$

Schröer and Irle focussed there eyes on the rotation of the arms. The center of the rotation is marked in the drawing. (Ratio of length of the arms and length of the square is $\mathbf{f a k}=\mathbf{0 . 4 3 6}$)

First of all they asked for a circle possibly equal in area with the given square. So they realizied that the circle you can easily construct has nearly the same area as the square!
All research workers didn't pay attention to this circle !!

Circle: $153.94 \mathrm{~cm}^{2}$
But what's about a second square equal in area with the larger circle?? (Leonardos drawing contains the characteristic of a so called emblem, which were used in the $16^{\text {th }}$ and $17^{\text {th }}$ century)
Schröer and Irle found the missing link:
Connect the corner of the square with the center of the circle and you can construct a larger square (nearly) equal in area to the circle.

Square: $176.89 \mathrm{~cm}^{2}$

The real surprise is the procedure for a construction, defined in this way:

We start with a square and a circle intersecting the square's sides	Connect upper intersection points, multiply length of the square with 0.436 and we get midpoint of the rotation of the arms	Intersection point of arm rotation with upper side of the square is marked.
Perpendicular bisector yields center point of the larger circle	Construct the larger circle	Connecting the edge of the square and center point of the larger circle and you can draw intersection point with the larger circle

Second square is drawn

First Calculations

In the classroom we started with an example:
($\mathrm{a} 1=10$ and $\mathrm{r} 1=5.4$)
(Geometrical construction and algebraic calculations parallel)

- For the geometrical constructions (by hand) we used straightedge and compass. I think, it is necessary to use the fingers for at least one example!!
- For the calculations we used Derive.

You need equation of a straight line and equation of a circle in this form:

$$
\left(x-x_{m}\right)^{2}+\left(y-y_{m}\right)^{2}=r^{2}
$$

a1 $:=10$
$\mathrm{r} 1:=5.4$
$x^{2}+(y-r 1)^{2}=r 1{ }^{2}$
$\frac{y-\frac{\mathrm{a} 1}{2}}{x-\frac{\mathrm{xk}}{2}}=-\frac{\mathrm{xk}}{\mathrm{a} 1}$
$\left(\frac{a 1}{2}\right)^{2}+(y-\mathrm{r} 1)^{2}=\mathrm{r1}{ }^{2}$
$[y=7.43960, y=3.36039]$
yt $:=7.4396$
rt : = a1•0.436
$x t:=\frac{a 1}{2}-\mathbf{r t}$
$(x-x t)^{2}+(y-y t)^{2}=r t^{2}$
$(x-x t)^{2}+(a 1-y t)^{2}=r t^{2}$
[$x=4.16901, x=-2.88901]$
$\mathrm{xk}:=4.16901$
$\frac{y-\frac{a 1}{2}}{0-\frac{x k}{2}}=-\frac{x k}{a 1}$
$[y=5.86903]$
$r 2:=5.86903$
$x^{2}+(y-r 2)^{2}=r 2^{2}$
$y=\frac{2 \cdot r 2}{a 1} \cdot x+r 2$
$x^{2}+\left(\frac{2 \cdot r 2}{a 1} \cdot x+r 2-r 2\right)^{2}=r 2^{2}$
$[x=3.80606, x=-3.80606]$

$$
\begin{aligned}
& x 2:=3.80606 \\
& y=\frac{2 \cdot r 2}{a 1} \cdot x 2+r 2 \\
& y=10.3366 \\
& a 2:=10.3366 \\
& a 1^{2}=100 \\
& \pi \cdot r^{2}=91.6088 \\
& \mathrm{a}^{2} 2^{2}=106.845 \\
& \pi \cdot r 2^{2}=108.213 \\
& \frac{\pi \cdot r 2^{2}}{2} \cdot 100=101.280 \\
& \mathrm{a} 2^{2}
\end{aligned}
$$

The role of the CAS:
We use Derive to solve 4 equations but the process must be controlled by the students.

Questions

- Does the sequence of ratios of areas (circle - square) converge?
- What's the limit of this sequence?
- What's the effect of other dimensions of the initial pair (circle - square)?
- Does the sequence converge, if you use different factors ($f a k \neq 0.436$) ?
- What's the effect of the factor on the limit of the sequence?

Geometrical Iteration with Cabri

One of the most powerful tools is the application of macros.
We use for simplification fak:=0.5

Iterations with Derive

We cannot be satisfied with these results. Our next calculation (algebraic-analytical methods) uses the ITERATES-Function of Derive.
Syntax of the ITERATES-Function:
ITERATES(Operation , Variable, Initial Object , Number of Iterations)
Informations in a row:

- Length of initial square a1
- Radius of initial circle r1
- (Calculated) length of final square $\mathbf{a} 2$
- (Calculated) Radius of final circle $\mathbf{r} 2$
- Area of final circle
- Area of final square
- Ratio of this areas in percent

Operation (generating a row by the preceeding row) :
Take the $3^{\text {rd }}$ and $4^{\text {th }}$ value in the following row as initial objects!!

```
fak := 0.436
ITERATES \(\left(\left[a 1:=z_{3}, r 1:=z_{4^{\prime}} a 2, r 2, \pi \cdot r^{2}, ~ a 2^{2}, \frac{\pi \cdot r 2^{2}}{a^{2}} 100\right], z\right.\), startzeile, 10\()\)
startzeile \(:=\left[0,0,10,5.4, \pi \cdot 5.4^{2}, 10^{2}, \frac{\pi \cdot 5.4^{2}}{10^{2}} \cdot 100\right]\)
```

$\left[\begin{array}{ccccccc}0 & 0 & 10 & 5.4 & 91.6088 & 100 & 91.6088 \\ 10 & 5.4 & 10.3366 & 5.86903 & 108.214 & 106.845 & 101.280 \\ 10.3366 & 5.86903 & 11.1745 & 6.30184 & 124.762 & 124.870 & 99.9136 \\ 11.1745 & 6.30184 & 12.0253 & 6.78626 & 144.681 & 144.608 & 100.050 \\ 12.0253 & 6.78626 & 12.9470 & 7.30590 & 167.686 & 167.626 & 100.035 \\ 12.9470 & 7.30590 & 13.9387 & 7.86556 & 194.361 & 194.288 & 100.037 \\ 13.9387 & 7.86556 & 15.0064 & 8.46807 & 225.277 & 225.194 & 100.037\end{array}\right]$

Different initial objects:
fak:= 0.436
a1:= 10
r1:= 5.2
r1:= 5.6
r1:= 6.0
r1:=8.0
84.9486
98.5203
113.097
201.061
103.204
100.204
99.2032
106.642
100.127
99.5
100.027
100.094
100.068
100.039
$100.034 \quad 100.037$
100.038
100.031
100.037
100.037
100.037

Different factors:
fak: $=0.35$
fak:=0.45
fak:=0.46
fak:=0.5
84.9486
84.9486
84.9486
84.9486
102.902
102.500
99.7301
99.7029
99.7254
100.351
100.034
100.012
99.9334
100.265
100.004
99.9845
99.9126
100.277
100.007
99.9873
99.9144
100.275
99.9871
99.9142

Summing up

The special attraction is to work at different levels:

- Historical aspects
- Geometric-constructiv work with compass and straightedge
- Calculations of intersection-points (line - circle), lengths and ratios
- Constructions with a DGS
- Iterations with a CAS

The real fascination is not answering the question for the problem of squaring the circle, but the convergence of that sequence generated by Leonardo's procedure!!

 Thats the real secret of this drawing!!
Student'reactions

," Most important for me was, that mathematics is not only a boring manipulation of terms , but can be an exiciting puzzle."
"I liked the variation"
„Most important for me was to be able to control the computer-applications for the solutions" "I liked to discover a little bit of Math-history"
„The actuallity!"

