## BspNr: F0210

| Themenbereich                                |                           |  |  |  |
|----------------------------------------------|---------------------------|--|--|--|
| Integralrechnung                             |                           |  |  |  |
| Ziele                                        | vorhandene Ausarbeitungen |  |  |  |
| • Berechnung von Untersummen und Obersummen  | TI-92 (F0210a)            |  |  |  |
| Analoge Aufgabenstellungen – Übungsbeispiele | F0211                     |  |  |  |
| Lehrplanbezug (Österreich):                  | 8. Klasse                 |  |  |  |
| Quelle: Dr. Thomas Himmelbauer               |                           |  |  |  |

## **Obersumme und Untersumme**

## Angabe und Fragen:

Gegeben ist die Funktion  $f(x) = x^3$ . Berechne für  $\int_0^a f(x) \cdot dx$  zunächst eine Formel, die die Obersumme bzw. Untersumme in Abhängigkeit von der Obergrenze *a* und der Anzahl der Teilintervalle *n* berechnet. Danach ist  $\int_0^a f(x) \cdot dx$  dadurch zu berechnen, dass für Obersumme und Untersumme der Grenzwert für  $n \to \infty$  bestimmt wird.

Das Ergebnis ist durch direkte Berechnung von  $\int_{0}^{a} f(x) \cdot dx$  zu überprüfen.

Beschreibe, wie Ober- und Untersumme für a = 2 und Teilungszahl n = 25 in der Graphik des CAS dargestellt werden können.

## Ausarbeitung (System: TI-92)

Teil 1:

Zunächst definieren wir die Funktion. Dann berechnen wir die Rechtecksfläche mit der Breite  $\frac{a}{n}$  und der Höhe gleich dem Funktionswert  $f(i \cdot \frac{a}{n})$  am i-ten Teilungspunkt  $i \cdot \frac{a}{n}$ . Die Summe dieser Rechtecksflächen ergibt dann die Obersumme bzw. Untersumme.

 $\begin{array}{c} \hline f_{1} & \hline f_{2} & \hline f_{3} & \hline f_{3}$ 

Der Grenzwert liefert dann den Wert des Integrals.

| F1 770 F2<br>▼ ← Alge | braCalcOtherPi                | rgmIOClean Up                                                    |
|-----------------------|-------------------------------|------------------------------------------------------------------|
| ∎Define u             | $u(n) = \sum_{i=0}^{n} rf(i)$ | Done                                                             |
| • o(n)                |                               | $\frac{a^4 \cdot (n+1)^2}{4 \cdot n^2}$                          |
| ■u(n)                 |                               | $\frac{a^4 \cdot \left(n^2 - 2 \cdot n + 1\right)}{4 \cdot n^2}$ |
| սՀոշ                  |                               |                                                                  |
| MAIN                  | RAD AUTO                      | FUNC 6/30                                                        |

| F17700 F27<br>- Algebra Calc Other PrgmIO Clean                        | Up   |
|------------------------------------------------------------------------|------|
| • Define $rf(i) = f\left(\frac{i \cdot a}{n}\right) \cdot \frac{a}{n}$ | Done |
| • Define $o(n) = \sum_{i=1}^{n} rf(i)$                                 | Done |
| • Define $u(n) = \sum_{i=0}^{n-1} rf(i)$                               | Done |
| define u(n)=Σ(rf(i),i,0,n-                                             | 1)   |
| MAIN RAD AUTO FUNC 4/30                                                |      |

| F1 770<br>▼ ∰ A1 | F2+<br>gebraCalcOthe | PrgmIOC1e                      | an Up           |
|------------------|----------------------|--------------------------------|-----------------|
| •                |                      | a <sup>4</sup> (n <sup>2</sup> | -2·n+1)         |
| - u(n)           |                      | 4                              | n <sup>2</sup>  |
| ■ lim o(<br>n→∞  | n)                   |                                | <u>a</u> 4<br>4 |
| ■ lim u(<br>n→∞  | n)                   |                                | <u>a</u> 4<br>4 |
| limit            | (u(n),n,∞)           |                                |                 |
| MAIN             | RAD AUTO             | FUNC 8/30                      |                 |

Das kann mit der eingebauten Rechnerfunktion überprüft werden.

| F1770 F2▼<br>▼ ← Algebr | a Calc Ot | γ <del>,</del><br>her PrgmΙ( | Clean | <del>f</del>        |
|-------------------------|-----------|------------------------------|-------|---------------------|
| ■ lim o(n)<br>n→∞       |           |                              |       | a <sup>4</sup><br>4 |
| ■ limu(n)<br>n→∞        |           |                              |       | a <sup>4</sup><br>4 |
| •∫ <sup>a</sup> f(x)dx  |           |                              |       | a <sup>4</sup><br>4 |
| l(f(x),x                | ,0,a)     |                              |       |                     |
| MAIN                    | RAD AUTO  | FUNC                         | 9/30  |                     |

Teil 2:

Zunächst definieren wir die Funktion im [y=]-Editor. Danach eröffnen wir ein neues Blatt im Data-Matrix-Editor.





In die Spalte c1 geben wir die Intervalluntergrenze und die Teilungspunkte des Intervalles ein (Intervall [0,2], n = 25 Teilintervalle). Vor der Eingabe Cursor auf c1 stellen und ENTER drücken.

| Ti Ti | Pior? | California ( |       | 5845 (-58) -<br>5845 (-58) - | )<br>Å | f7<br>tat |
|-------|-------|--------------|-------|------------------------------|--------|-----------|
| DATA  |       |              |       |                              |        |           |
|       | c1    | c2           | сЗ    | c4                           | c5     |           |
| 1     |       |              |       |                              |        |           |
| 2     |       |              |       |                              |        |           |
| 3     |       |              |       |                              |        |           |
| 4     |       |              |       |                              |        |           |
| 5     |       |              |       |                              |        |           |
| 6     |       |              |       |                              |        |           |
| 7     |       |              |       |                              |        |           |
| c1=   | seq(x | ,x,0,        | 2-2/2 | 25,2/2                       | 257    |           |
| MAIN  |       | RAD AUTO     |       | FUNC                         |        |           |

| (F1  | Plot <sup>52</sup> | 5etup Ce | 73 F4<br>211 Hea | der Cal | Utils | F7<br>tat |
|------|--------------------|----------|------------------|---------|-------|-----------|
| DATA |                    |          |                  |         |       |           |
|      | c1                 | c2       | сЗ               | c4      | c5    |           |
| 1    | Θ                  |          |                  |         |       |           |
| 2    | 2/25               |          |                  |         |       |           |
| 3    | 4/25               |          |                  |         |       |           |
| 4    | 6/25               |          |                  |         |       |           |
| 5    | 8/25               |          |                  |         |       |           |
| 6    | 2/5                |          |                  |         |       |           |
| 7    | 12/25              |          |                  |         |       |           |
| 8r1  | c1=0               |          |                  |         |       |           |
| MAIN |                    | RAD AUTO |                  | FUNC    |       |           |

In der Spalte c2 berechnen wir die Funktionswerte von c1. Das sind die Werte, die wir zur Darstellung der Untersumme benötigen. Vor der Eingabe Cursor auf c2 stellen und ENTER drücken.

| <b>F</b> 1 <b>7</b> | Pro 1 | California ( | e ti i Here | see ale | ) Šis | F7<br>tat |
|---------------------|-------|--------------|-------------|---------|-------|-----------|
| DATA                |       |              |             |         |       |           |
|                     | c1    | c2           | сЗ          | c4      | c5    |           |
| 1                   | 0     |              |             |         |       |           |
| 2                   | 2/25  |              |             |         |       |           |
| 3                   | 4/25  |              |             |         |       |           |
| 4                   | 6/25  |              |             |         |       |           |
| 5                   | 8/25  |              |             |         |       |           |
| 6                   | 2/5   |              |             |         |       |           |
| 7                   | 12/25 |              |             |         |       | ]         |
| c2=                 | f(c1) |              |             |         |       |           |
| MAIN                |       | RAD AUTO     |             | FUNC    |       |           |

| Plot Setup Cell Header Calc Util St |       |          |    |      |    |   |  |
|-------------------------------------|-------|----------|----|------|----|---|--|
| DATA                                |       |          |    |      |    |   |  |
|                                     | c1    | c2       | сЗ | c4   | c5 | 1 |  |
| 1                                   | 0     | Θ        |    |      |    | 1 |  |
| 2                                   | 2/25  | 8/156    |    |      |    | 1 |  |
| 3                                   | 4/25  | 64/15    |    |      |    | 1 |  |
| 4                                   | 6/25  | 216/1    |    |      |    |   |  |
| 5                                   | 8/25  | 512/1    |    |      |    |   |  |
| 6                                   | 2/5   | 8/125    |    |      |    |   |  |
| 7                                   | 12/25 | 1728/    |    |      |    |   |  |
| 8r1                                 | c2=0  | -        |    |      |    |   |  |
| MAIN                                |       | DOD OUTD |    | FUNC |    |   |  |

In der Spalte c3 berechnen wir die Funktionswerte von c1 jeweils um 2/25 erhöht. Das sind die Werte, die wir zur Darstellung der Obersumme benötigen. Vor der Eingabe Cursor auf c3 stellen und ENTER drücken.

| F1 77 | <b>1</b> 01013 | Sal tar 🕯 | e ti Hers | see Cale | )<br>Å Å Å | F7<br>itat |
|-------|----------------|-----------|-----------|----------|------------|------------|
| DATA  |                |           |           |          |            |            |
|       | c1             | c2        | сЗ        | c4       | c5         |            |
| 1     | 0              | 0         |           |          |            |            |
| 2     | 2/25           | 8/156     |           |          |            |            |
| 3     | 4/25           | 64/15     |           |          |            | 1          |
| 4     | 6/25           | 216/1     |           |          |            | 1          |
| 5     | 8/25           | 512/1     |           |          |            |            |
| 6     | 2/5            | 8/125     |           |          |            | ]          |
| 7     | 12/25          | 1728/     |           |          |            | 1          |
| c3=   | f(c1+          | 2/25)     |           |          |            |            |
| MAIN  |                | RAD AUTO  |           | FUNC     |            |            |

| F1 777 | Plot S | Setup C  | 3<br>ell Head | der Cal | -Utils | F7<br>tat |
|--------|--------|----------|---------------|---------|--------|-----------|
| DATA   |        |          |               |         |        |           |
|        | c1     | c2       | сЗ            | c4      | c5     | ]         |
| 1      | 0      | 0        | 8/156         |         |        | ]         |
| 2      | 2/25   | 8/156    | 64/15         |         |        |           |
| 3      | 4/25   | 64/15    | 216/1         |         |        |           |
| 4      | 6/25   | 216/1    | 512/1         |         |        |           |
| 5      | 8/25   | 512/1    | 8/125         |         |        |           |
| 6      | 2/5    | 8/125    | 1728/         |         |        |           |
| 7      | 12/25  | 1728/    | 2744/         |         |        |           |
| 8r1    | c3=8/  | 15625    |               |         |        | <u> </u>  |
| MAIN   |        | RAD AUTO |               | FUNC    |        |           |

Dann definieren wir Plot1 für die Untersumme und Plot2 für die Obersummen.

|          | main\ousumme      | t) |
|----------|-------------------|----|
| DA1      | DefineCopyClear / | Ľ  |
| _        | Plot 1:           |    |
| 1        | Plot 2:           |    |
| 2        | Plot 3:           |    |
| 3        | Plot. 5:          |    |
| 4        | Plot 6            |    |
| 5        | Plot 7:           |    |
| 6        | Plot 8:           |    |
| <u> </u> | <u>F10C 3.</u>    |    |
| 8        | 1c3=8/15625       |    |
| Mé       | N BAD AUTO FUNC   | _  |

|                               | <u> </u> |
|-------------------------------|----------|
| Plot Type Histogram→          |          |
| Nøtterreere <u>0</u> ***      | _        |
| ×                             |          |
| 9                             |          |
| Hist. Bucket Width 2/25       |          |
| Use Freq and Categories? YES+ | _        |
| Category                      | -        |
| Include Categories (3         | -        |
| (Est-could) (Esc-could        | 1        |
|                               |          |

| F1 main\ousumme      | main\ousumme Plot 2           |
|----------------------|-------------------------------|
| DefineCopyClear      | Plot Type Histogram→<br>Marit |
|                      | ×c1                           |
| 2 Plot 39            | 9                             |
| 3 Plot 4             | Hist. Bucket Width 2/25       |
| 4 Plot 5:            | Use Freq and Categories? YES+ |
| 5 Plot 7:            | Catagony                      |
| 6 Plot 8:            | Include Categories ()         |
|                      | (Enten=SALE) (ESC=CANCEL      |
| <b>Gr1c3=8/15625</b> |                               |
| MAIN RAD AUTO FUNC   | MAIN RAD AUTO FUNC            |

Damit ergibt sich mit entsprechenden Windowvariablen folgendes Bild. (xmin muss ein Vielfaches der Länge der Teilintervalle 2/25 sein, sonst wird das Histogramm verschoben angezeigt)



