Sieglinde Fürst

Termstrukturen

	Elementare Algebra			
	Gleichungen lösen und Umformen – Termstrukturen erkennen			
Inhalte Ziele				
•	Multiplizieren von mehrgliedrigen Ausdrücken	 Erarbeiten von Rechenregeln – Der TI dient nur zur Überprüfung 		
• Quadrat eines Binoms ergänzen, Arbeiten mit Formeln		 Übungen zur Verbesserung des Strukturerkennens 		
•	Lösen von Gleichungen			

Im ersten Teil wird der TI nur zur Überprüfung eigener Rechenergebnisse eingesetzt und soll Hilfe zum Erarbeiten allgemein gültiger Regeln sein. Im zweiten Teil wird der TI als didaktisches Hilfsmittel eingesetzt, der mittels FACTOR- bzw. EXPAND-Befehls und durch Substitution zur Verbesserung der Fähigkeit Termstrukturen zu erkennen beitragen soll. Durch Auf- und Abbau von Termen beim Lösen von Gleichungen soll im dritten Teil einerseits wieder am Termstrukturerkennen gearbeitet werden, andererseits soll der Schüler die unterschiedlichen Lösungsfälle von Gleichungen interpretieren.

Arbeitsblatt: Multiplizieren von mehrgliedrigen Ausdrücken

Berechne zuerst ohne Taschenrechner, überprüfe das Ergebnis mit dem TI-92:

Ergebnis ohne TI	Ergebnis mit TI
$(2a + c) \cdot (3a + 2c) =$	
$(2a - c) \cdot (3a + 2c) =$	
$(2a + 5c) \cdot (-5b + d) =$	

Wie berechnet man (a + b + c) . (x + y) ???

Wie lautet die entsprechende Rechnung am TI-92?

Merksatz:

Berechne zuerst ohne Taschenrechner, dann überprüfe das Ergebnis mit dem TI-92:

Ergebnis ohne TI	Ergebnis mit TI
$(3x^2 + 4x - 2) \cdot (x - 2) =$	
$(2x^2 - x + 1) \cdot (x^2 + 1) =$	

Erkennen von Termstrukturen (Stundenplanung)

 $a^2 + 2.a.b + b^2$ ist die Ausrechnung von $(a + b)^2$ Wovon ist $9g^2 + 12.g.m + 4m^2$ die Ausrechnung? 1. Mit dem Befehl FACTOR errechnet uns der TI die "Angabe". $9g^2$ steht für 2. Wir vergleichen die Strukur: a^2 + 12.g.m steht für + 2.a.b \mathbf{h}^2

 $4m^2$ steht für

a müsste daher 3g und b 2m entsprechen:

(^{F1} 7990) F2★ F3★ F4★ F5 ★Algebra(Calc)Other PrgmIO(Clear a-z	נ
<pre>expand((a + b)²) a = 3·g and b = 2·m 9·g² + 12·g·m + 4·m expand((a+b)^2) a=3g and b=2m MAIN DEG AUTO FUNC 1/30</pre>	2

Das Substituieren sollte die Fähigkeit Termstrukturen zu erkennen verbessern.

Aufgaben:

1. Gegebene Terme als Quadrat eines Binoms anschreiben.

Gegebener Term	Schreibe als Quadrat eines Binoms	Formeltyp $(a+b)^2 (a-b)^2$	$a = a^2 =$	$b = b^2 = $	2ab =
$25 - 20 x + 4 x^2$					
$36v^2 + 48mv + 16m^2$					

2. Fehlende Teile ergänzen:

$$25x^{2} + \dots + 4y^{2} = (\dots + \dots)^{2}$$
$$\dots - 4d^{2} = (5s + \dots)(5s - \dots)$$

Kontrolle mit dem TI durch Substituieren:

Wir vermuten, dass folgende Lösungen richtig sind:

$$25x^2 + 20xy + 4y^2 = (...5x.. + ...2y..)^2$$
 ... $25s^2$... $4d^2 = (.5s + .2d.) (.5s - .2d.)$

Statt der Leerstellen werden (noch nicht verwendete) Buchstaben eingesetzt:

$$25x^2 + ...\mathbf{m}_{...} + 4y^2 = (...\mathbf{a}_{...} + ...\mathbf{b}_{...})^2$$
 $\mathbf{k}_{.....}$ $4d^2 = (5s + ...\mathbf{r}_{...}) (5s - ...\mathbf{r}_{...})$

(^{F1} 7770) ▼ 1 Algebra Calc Other PrgmIO Clear a-z)	(^{F1} 770) F2▼ F3▼ F4▼ F5 F5 F6 a-z) ▼ <u>★</u> Algebra[Calc]Other[PrgmI0]Clear a-z]
■5·x→a 5·x 2·u→b 2·u	• 25 − ² × 1. 25 − ²
■ 20·×·y → m 20·×·y	= 25·5 → K 25·5 = 2·d → r 2·d
$ = 25 \cdot x^{2} + m + 4 \cdot y^{2} = (a + b)^{2} 25 \cdot x^{2} + 20 \cdot x \cdot y + 4 \cdot y^{2} = (5 \cdot x + 2 \cdot y)^{2} $	■ $k - 4 \cdot d^2 = (5 \cdot s + r) \cdot (5 \cdot s - r)$ 25 \cdot s ² - 4 \cdot d ² = (5 \cdot s - 2 \cdot d) \cdot (5 \cdot s + 2 \cdot d)
25x^2+m+4y^2=(a+b)^2	k-4d^2=(5s+r)*(5s-r)

Die vermuteten Teilausdrücke werden unter diesen Buchstaben gespeichert (= Store).

Dann wird der Term eingegeben:

Leichter ist es, die Richtigkeit der vermuteten Lösungen mit den Befehlen FACTOR und/oder EXPAND zu überprüfen:

F17700 F2▼ ▼
• factor($25 \cdot x^2 + 20 \cdot x \cdot y + 4 \cdot y^2$)
(5·×+2·y) ²
• expand $((5 \cdot x + 2 \cdot y)^2)$
25·× ² + 20·×·y + 4·y ²
■ factor(25·s ² - 4·d ²)
(5·s - 2·d)·(5·s + 2·d
MAIN DEG AUTO FUNC 3/30

Nach Benützen des STORE – Befehls unter 2nd VAR – LINK die Variablen mit DELETE löschen!!

Aufgabe: Erstelle für deinen Nachbarn ähnliche Beispiele!

<u>Gleichungen – Umformungen – Lösungsmengen</u> (Stundenplanung)

Umformungen mit dem TI-92

<u>Beispiel 1</u>: Löse die Gleichung $2 \cdot x + 7 = 3$

Die Gleichung wird am TR eingegeben und in Klammer gesetzt. Neben der Klammer wird dann die gewünschte Rechenoperation eingegeben. Die neue Gleichung wird mit ENTER "heruntergeholt", in Klammer gesetzt und weiter behandelt.

[⁷¹770] F1 ▼	ebraCalcOtherP	rgmIOClear a-z)	F1770 F2▼ ▼ ← Algebra	F3+ F4+ F5 CalcOtherPrgmI	OClear a-z
				■ 2·×+7=3		2·×+7=3
				■2·×+7=3 ×	= -2	true
■2·x+7=	: 3	$2 \cdot x + 7 = 3$	5	∎linke seite		linke∙seite
■(2·×+7	- = 3) - 7	2·×= -4	1	■ 2·×+7 ×= -	2	3
_ 2·x = -4				■ rechte seit	e	rechte∙seite
2	-	× = -2	-	• 3		3
<2 米 x=⁻∙	4)/2			3		
MAIN	DEG AUTO	SEQ 3/30		MAIN DI	EG AUTO SEQ	6/30

Probe auf 2. Arten: Entweder die ganze Gleichung eingeben und den Mit-Operator verwenden oder konventionell beide Seiten getrennt rechnen.

<u>Beispiel 2</u>: Löse die Gleichung $\frac{x-5}{3} = 2x - 3$

Ist die Ausrechnung einer Klammer notwendig, verwendet man den Befehl F2:3Expand.

F1770 F2* F3* F4* F5 F1770 Algebra Calc Other PrgmIO Clear a-z)	F1770 Algebra Calc Other Pr	mIOClear a-z
• expand(x - 5 = $3 \cdot (2 \cdot x - 3)$) x - 5 = $6 \cdot x - 5$	•	$\left[\frac{x-5}{3} = 2 \cdot x - 3\right] \cdot 3$	x - 5 = 3 · (2 · x - 3)
■(x-5=6·x-9)-6·x -5·x-5=-9 ■(-5·x-5=-9)+5 -5·x=-4	3	■ expand(x - 5 = 3·(2·x - 3))	×-5=6·×-9
$= \frac{-5 \cdot x = -4}{5} \qquad -x = -4/5$	5	■(x-5=6·x-9)-6·x ■(-5·x-5=-9)+5	-5·x - 5 = -9 -5·x = -4
$\frac{x-5}{3} = 2 \cdot x - 3 x = -4/5$ false		■ <u>-5·× = -4</u> -5	× = 4⁄5
(x-5)/3=2*x-3 x=-4/5	-	(-5*x=-4)/-5	
MAIN DEG AUTO SEQ. 7/30		MAIN DEG AUTO	SEQ 6/30

Probe mit einer falschen Lösung, z.B.: nur durch 5 dividiert, daher –4/5 als Ergebnis.

Ale Ale	127 F37 F47 Jebra Calc Othe	r PrgmIO Cle	ar a-z
∎solue()			v = -2
solve	$\frac{x-5}{3} = 2 \cdot x - 3,$	×Ì	× = 4/5
solve((x-5)/3=2x	-3,x) SEQ 2/30	

Lösungsversuch mit dem SOLVE-Befehl: F2;1:SOLVE(

<u>Beispiel 3:</u> Berechne die Seite c eines Trapezes, wenn die Fläche A, die Seite a und die Höhe h gegeben sind!

Beispiel 4: Berechne den Prozentsatz, wenn Anteil A und Grundwert G gegeben sind!

<u>Beispiel 5</u>: Löse nach x : a) a.x = b und b) a.x + b = c. Kontrolliere mit dem TI! Der TI-92 liefert für 5b die Lösung x = -(b - c) / a (Siehe Abbildung). Der Schüler bekommt beim händischen Rechnen vermutlich die Lösung $\frac{c - b}{a}$. Um zu kontrollieren, ob seine Lösung mit der des TI ident ist setzt der Schüler Zahlen ein Eine exakte Eingabe ist

Lösung mit der des TI ident ist, setzt der Schüler Zahlen ein. Eine exakte Eingabe ist Voraussetzung für ein brauchbares Ergebnis.

Algebra Calc Other	F5 PrgmIOClear a-z…
■solve(area=(a+c)/2*h,	c) c=ta+2*area∕h
■ solve(a=g*p/100,p)	p=100*a∕g
■solve(a*x=b,x)	x=b∕a
■solve(a*x+b=c,x)	x==(b−c)/a
■c-b/a=-(b-c)/ala=3 an	d b=-5 and c=2 false
■(c-b)/a==(b-c)/ala=3 -	and b=-5 and c=2 true
⟨c-b⟩/a=⁻⟨b-c⟩/a	a=3 and b=-5
MAIN DEG AUTO	FUNC 6/30

Lösungsmengen von Gleichungen

<u>Beispiel 5</u>: Löse die Gleichung: 3a - (3 + a) = -8 + 2a + 5

Bei der Eingabe in den TI-92 erhält man 2a - 3 = 2a - 3.

[*1] ▼	F2+ gebraCalcOther	PrgmIO Clear a-z
∎3·a-(3	5 + a) = -8 + 2 · a + 3	5
		2·a-3=2·a-3
■(2·a-3	3=2·a−3)+3	2 · a = 2 · a
■(2·a=2	2·a)-2·a	0 = 0
<2*a=2	.¥a)−2a	
MAIN	DEG AUTO	SEQ 3/30

F17700 F2▼ ▼ ← Algebra Calc Other PrgmIO Clear	a-z)
■solve(3·a-(3+a)= -8+2·a+5,a)	true
■3·a-(3+a)=-8+2·a+5 a=-1	true
■3·a-(3+a)=-8+2·a+5 a=.9	true
■3·a-(3+a)=-8+2·a+5 a=99	true
■3·a-(3+a) a=99	195
■ -8+2·a+5 a=99	195
-8+2*a+51a=99	
MAIN DEG AUTO SEQ 6/30	

Eine versuchte Äquivalenzumformung liefert 0 = 0

Lösungsversuch mit dem SOLVE-Befehl: **F2;1:SOLVE**(ergibt die Meldung "true". Der TI sagt nur indirekt die Lösung. Einsetzen von verschiedenen Zahlen liefert ebenfalls jeweils "true". Linke Seite und rechte Seite getrennt gerechnet, ergibt den gleichen Wert. Den Schluss "Alle Zahlen sind Lösung" muss der Schüler selbst treffen.

<u>Beispiel 6</u>: Löse die Gleichung: 11b + 5 = 11b - 7

Beim Lösungsversuch mit dem SOLVE-Befehl meldet der TI "false".

Äquivalenzumformungen lassen sich durchführen, aber man "verliert" die Variablen und erhält das Ergebnis 0 = -12. Auch hier liefert der TI nur indirekt die Lösung. Seine Meldungen müssen erst interpretiert werden!

F17700 F27 F37 F47 F5 F17700 Algebra Calc Other PrgmIO Clea	ar a-z)
■solve(11·b+5=11·b-7,b)	false
■(11·b+5=11·b-7)-5 11·b=3	11·b - 12
■(11 · b = 11 · b - 12) - 11 · b	0 = -12
<11*b=11*b-12>-11b	
MAIN DEG AUTO SEQ 3/30	