

TIME 2016

Study of a non linear oscillator with CAS through analytical, numerical and qualitative approaches

Jeanett López García Jorge Javier Jiménez Zamudio

UNAM-México

Introduction

- According with Blanchard, Devaney and Hall (1999), Differential Equations should be taught holistically with three approaches: analytical, qualitative and numerical.
- There are few programs in Differential Equations with these topics where non linear models appear. (In our case, for the BSc: Applied Mathematics and Computer Science).

"The more realistic is a model in differential equations, the harder it is to find an analytical solution"

Introduction

Q1: Where can professors find any examples more realistic, that involve the three approaches: analytic, qualitative and numerical?

Mickens (2010), in his book "Truly nonlinear oscillators" gave good examples of non linear oscillators, but....

Q2: In a first EDO course, is it possible that our students can be prepared to analyze a problem holistically with the three approaches?

CAS could be the bridge in order to achieve it... let's see a study case!

Many examples of TNL

Examples of second-order, nonlinear differential equations (TNL Oscillators):

$$\ddot{x} + x^3 = 0,$$

$$\ddot{x} + x^{3/5} = 0,$$

$$\ddot{x} + x + x^{1/3} = 0,$$

$$\ddot{x} + x^2 \operatorname{sgn}(x) = 0,$$

$$\ddot{x} + (1 + \dot{x}^2)x^{1/3} = 0,$$

$$\ddot{x} + \frac{1}{x^{1/3}} = 0.$$

Model

$$\frac{d^2x}{dt^2} + 4x\left(1 + x^2\right)^{-\frac{3}{2}} = 0$$

Initial condition: x(0) = 1, x'(0) = 0

The nonlinear function

$$f(x) = 4x(1+x^2)^{-\frac{3}{2}}$$
 is of odd parity, i.e.

$$f\left(-x\right) = -f\left(x\right)$$

we assume that f(x) is such that all solutions are periodic

Model in context

A simple interpretation would be consider a particle of mass m which is constrained to move over the line y = 1

and subject to a gravitational interaction with a mass M placed at the origin.

Model in context

The force on the particle in the x direction is given by:

$$F_{x} = -\frac{GmMx}{(1+x^{2})^{\frac{3}{2}}} F_{x} = -|F|\cos\theta = -\frac{GmM}{r^{2}}\cos\theta = -\frac{GmM}{r^{2}} \frac{x}{r}$$

With
$$r = \sqrt{1 + x^2}$$

So,
$$F_{x} = -\frac{GmMx}{\left(1+x^{2}\right)^{\frac{3}{2}}}$$

Newton's second law provides us the equation of motion, described as:

$$ma = F_x = -\frac{GmMx}{\left(1 + x^2\right)^{\frac{3}{2}}} = m\ddot{x}$$

Let constants: GM = 4

Therefore,
$$\frac{d^2x}{dt^2} + 4x(1+x^2)^{-\frac{3}{2}} = 0$$

Looking for a solution

Three methods exist for carrying out this task:

- (1) the use of **analytical methods** in order to find first-integrals,
- (2) the use of qualitative methods based on examining the geometrical properties of the trajectories in the 2-dim phase-space, and
- (3) the use numerical analysis

Looking for a solution

It is very common for students tempted to implement immediately the differential equation with some software, using Wolfram alpha or Grapher

WOLFRAM ALPHA (online)	GRAPHER (McIntosh)	
WolframAlpha connectational. $y'' + 4y(1+y'y)'(-3/2) = 0$ $y''(x) + 4y(x) (1 + y(x) y(x))^{-3/2} = 0$ Examples \Rightarrow Examples \Rightarrow Random Imput y''(x) + 4 y(x) (1 + y(x) y(x))^{-3/2} = 0 Autonomous equation y''(x) = $-\frac{4y(x)}{(1 + y(x)^2)^{3/2}}$ Autonomous equation Autonomous equation Autonomous equation Autonomous equation $(y(x)^2 + 1)^{3/2} y''(x) = -4y(x)$ $(y(x)^2 + 1)^{3/2} y''(x) + 4y(x)$ $(y(x)^2 + 1)^{3/2} y''(x) + 4y(x)$	y"=-4y(1+y ²)-\frac{3}{2},y(0)=1,y'(0)=0	

Analytical method

First-Integrals

As
$$f(x) = 4x(1+x^2)^{-\frac{3}{2}} \neq \begin{cases} f(t) \\ f(\dot{x}) \end{cases}$$
, it can be shown that energy is conserved.

So, the potential energy is calculated:

$$V(x) = -\int f(x)dx = \int \frac{4x}{(1+x^2)^{\frac{3}{2}}}dx$$

Let
$$u = (1 + x^2)$$
; $du = 2xdx$

$$V(x) = \int 2u^{-\frac{3}{2}} du = 2u^{-\frac{1}{2}} (-2) = -\frac{4}{(1+x^2)^{\frac{1}{2}}}$$

Analytical method

Reduction of order 2 to 1 -> Find out a first-integral of the equation

This is done by multiplying
$$\dot{x} = \frac{dx}{dt}$$

This is done by multiplying
$$\dot{x} = \frac{dx}{dt}$$
Substituting have: $\frac{d}{dt} \left(\frac{1}{2} \dot{x}^2 \right) = f\left(x \right) \frac{dx}{dt} = -\frac{dV}{dx} \frac{dx}{dt} = -\frac{dV}{dt}$

$$\frac{d}{dt}\left(\frac{1}{2}\dot{x}^2 + V\right) = 0$$

Therefore,
$$\left(\frac{1}{2} \dot{x}^2 + V \right) = \frac{d}{dt} \left(\frac{1}{2} \dot{x}^2 + V \right) = E = -2\sqrt{2}$$

where the initial conditions were used to evaluate E.

Analytical method

So, the 1st-order ODE resulting is:
$$\frac{1}{2}\dot{x}^2 = \frac{4}{\left(1+x^2\right)^{\frac{1}{2}}} - 2\sqrt{2}$$

$$\frac{dx}{dt} = \sqrt{\frac{8}{\left(1+x^2\right)^{\frac{1}{2}}} - 4\sqrt{2}}$$

Again, with Wolfram Alpha....

Standard computation time exceeded...

Divergent algorithm!

Connection with qualitative method

It can be seen that the energy drawn, it represents a closed curve (contour) in the projection in the plane x vs. v=dx/dt

Potential function and the plane representing the constant energy $E = -2\sqrt{2}$

Projection in the plane, with contour lines for different values of energy

Phase plane

Qualitative method

The second-order differential equation, may be reformulated to two first-order system equations

$$\dot{v} = f(x), \quad \dot{x} = v$$
 i.e.
$$\dot{x} = v$$

$$\dot{v} = 4x \left(1 + x^2\right)^{-\frac{3}{2}}$$

As usual, the x is interpreted as the position of the particle and the speed v, both dependent functions of time t.

The variables x and v define a 2-dim phase-space which we denote as (x, v) proposed by H. Poincaré.

PPLANE - MATLAB

Some of the curves drawn on the **vector field** represent particular solutions when the trajectory associated with the initial values in the phase plane is followed, sometimes called the phase portrait.

Closed Phase-Space Trajectories

In particular, for $(x_0, v_0) = (1,0)$

In this qualitative approach: it was easy, students can recognized that closed curves in phase-space correspond to periodic solution.

Numerical method

$$x_{n+1} = x_n + v_n h$$

$$v_{n+1} = v_n + F_n h$$

$$t_n = t_0 + nh$$

ODE System first order Application of **Euler algorithm**?

Disadvantages: It is unstable and not preserve energy.

Vs. Euler-Cromer algorithm

$$x_{n+1} = x_n + v_{n+1}h$$
$$v_{n+1} = v_n + F_nh$$

Advantages: It produces stable oscillation, and preserves the total energy produced in each cycle of oscillation.

Euler-Cromer algorithm implemented in Maple

Maple code:

Total iterations: 20

Section 1: Enter data

```
>f:=(t,x)->-4*x(t)*(1+x(t)*x(t))^(-3/2);
                       f := (t, x) \rightarrow -\frac{4 x(t)}{(1 + x(t) x(t))^{(3/2)}}
Initial conditions
>t0:=0.0:
>x0:=1.0:
>v0:=0.0:
>tf:=4.65:
>ics := x(0)=1.0, D(x)(0)=0.0:
Section 2: Approach solution
Step 1
>h:=(tf-t0)/20.0;
                              h := 0.2325000000
>X[0]:=x0;
V[0] := v0;
                                   X_0 := 1.0
                                    V_0 := 0.
>f(t0,X[0]);
V[1] := V[0] + f(t0, X[0]) *h; X[1] := X[0] + V[1] *h;
                                -1.414213564
                              V_1 := -0.3288046536
                              X_1 := 0.9235529180
```

Results: Euler-Cromer algorithm

The result for n = 20 iterations shown in the following table with the calculation of energy at each step

n	Xn	Vn	En	Δ(E)
0	1	0	-2.82842712	
1	0.92355292	-0.32880465	-2.88446031	-0.05603318
2	0.76793374	-0.6693298	-2.94848228	-0.06402197
3	0.52947309	-1.02563719	-3.00909619	-0.06061391
4	0.2119881	-1.36552687	-2.98071039	0.0283858
5	-0.14840912	-1.55009556	-2.7552659	0.22544449

	-			*	
	•		•		
17	0.69177505	1.15383861	-2.62391681	-0.00840372	
18	0.87684401	0.79599553	-2.69075226	-0.06683545	
19	0.98132137	0.44936502	-2.75400039	-0.06324813	
20	1.00864811	0.11753434	-2.80931624	-0.05531585	

NUMERICAL PHASE CURVE ASSOCIATED WITH THE METHOD OF EULER-CROMER (Spreadsheet)

Students can check is the same closed curve!

Conclusions / Reflections

- Our purpose is linking research-teaching with cutting edge topics, as non linear differential equations.
- The qualitative technique is more powerful since it may be applied in all situations, in comparison with the analytical technique.
- The goal is to show that either all or some of the trajectories in the phase-plane are closed. Since closed trajectories correspond to periodic solutions, the existence of periodic solutions was established.

Conclusions / Reflections

- Visualization helps intuitive understanding.
- The learning-teaching process is shorter and dynamic in order to visualize that the vector field, potential function, phase plane, etc., associated with the differential equations.
- A good combination of CAS could give us the three analysis. Such as: Maple, MatLab, Graph, and Excel.
- We say that how much software that we have to use depends on the dynamics of the class.

TIME 2016

Thank you!

¡Gracias!