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IV. Circuits 

Important Laws 
 

The current in a resistor of resistance R to which a voltage U is applied is given by Ohm's Law 

.
U

I
R

  

 
In more complex circuits the flow of current follows Kirchhoff's Laws: 
 
Kirchoff's Current Law (KCL) 

The algebraic sum of the currents flowing into and out of any junction in a circuit is equal to zero 

0.k
k

I   

 
Kirchoff's Voltage Law (KVL) 

The algebraic sum of voltages of the sources is equal to the sum of potential drops on resistors along 
any closed loop within a circuit. 

.k k k
k k

E I R   

An equivalent formulation is: 

The algebraic sum of all voltages in a loop must equal zero. 

Comments: 

 The positive direction of a current flow in circuit diagrams can be arbitrarily chosen. 

 Negative values for a current obtained as the solution of an exercise should be interpreted as the 
current flowing in the opposite direction to the assumed one. 

We start with exercises in which we calculate the total circuit resistance. In the solution methods we 
use the following circuits properties: 

 total resistance of a serial circuits equal to the sum of all resistances 

.T k
k

R R  

 total conductance (reciprocal of the resistance) of a parallel circuit is the sum of the conductances 
of all individual branches. 

1 1
.

kT kR R
  

From the above relations we see that calculation of the total resistance of serial or parallel resistors 
is trivial. Therefore we only calculate total resistance in serial-parallel circuits. 
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PROBLEMS 

IV.0 Let's start with a easy problem from a textbook: 

Given are: U01 = 30 V, U02 = 15 V, R1 = R2 = 200 , R3 = 400 , R4 = 600 , R5 = 300  

Find the currents I1 – I5 

 

Solution:  

Following Kirchhoff's laws we get a system of 5 linear equations for 5 unknowns I1 through I5. 

 
01 1 1 3 3 02 2 2 4 4

3 3 5 5 4 4

1 3 5 4 5 2

(1) (2)

(3)

(4) (5)

U I R I R U I R I R

I R I R I R

I I I I I I

   

 
   

 

We enter the equations first, followed by fixing the parameter values. Solve gives the currents (in 
Ampere) 

 

With TI-NspireCAS we can enter Volt and Ohm and we receive the currents in Ampere. 
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IV.1 Find the total resistance for the circuit presented in Fig. IV.1. 

 

Fig IV.1 

 Give the numerical result for the total resistance for R1 = 2, R2 = 3, R3 = 2, R4 = 3,  

 R5 = 2, R6 = 3, R7 = 2, R8 = 2 and R9 = 2. 

 

Solution:  

Note that Resistors R5, R6 and R7 are connected in series. Therefore the above circuit can be replaced 
by a simpler form (Fig. IV.1a). 

 
Fig IV.1a 

where RA = R5 + R6 + R7. 

Resistors RA and R4 (Fig. IV.1.a) are parallel connected. Hence the next simplification is shown in  
Fig. IV.1.b 

 
Fig IV.1b 

where 
B 4 A

1 1 1
.

R R R
   

As the resistors R3, RB and R8
 (Fig IV.1.b) are series connected we then have (Fig. IV.1c): 

 
Fig IV.1c 

with RC = R3 + RB + R8. 

 

Next steps are obvious. 

 
Resistors R2 and RC (Fig. IV.1.c) are parallel connected. 
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Fig IV.1d 

where 
D 2 C

1 1 1
.

R R R
   

Finally total resistance RT can calculated according the formula 

T 1 D 9.R R R R    

 
Let us solve the above equation system. 

 

 

The solution of the system is quite bulky!! Finally it is easy to carry out the calculation for the given 
numerical data and find the resulting total resistance: 

 
 

With DERIVE we can do in the same way, however we miss the "eliminate" command. So 
we receive the bulky solution containing all variables. 
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We could also work stepwise without displaying the intermediate results: 

 

 

 
Finally we substitute the given resistances. 
If we enter the designations together with an equals-sign then we can see the intermediate 
results, too. 
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Below you can see the same procedure carried out with TI-NspireCAS. 

 
 
The reader should have no trouble solving similar problems. 
 
 
■▬▬▬▬▬▬▬▬ 
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IV.2 Calculate the resistance RAB equivalent to the system of resistors R1, …, R5 connected as 
shown in Fig. IV.2. 

 

Fig. IV.2 

Solution:  

Applying Kirchhoff's law we obtain the following system of equations: 

 I RAB = I1 R1 + I2 R2 

 I1 R1 + (I1 – I2) – (I – I1) R3 = 0  for the sub-circuit ACDA 

 I2 R2 + (I – I2) – (I1 – I2) R5 = 0  for the sub-circuit CBDC 

It remains to enter the equations and solve the system for RAB: 

 

With TI-NspireCAS we cannot eliminate the auxiliary currents, so we have to display the 
whole solution. Substituting the same data set makes sure that both results are identical. 

 

I-I2 



8 

 
 
For calculating the total resistance for more complex circuits it is profitable to apply Y- and -Y 

Conversions. These conversions are explained in the next problem. 

 
■▬▬▬▬▬▬▬▬ 
 

 

IV.3 Three resistors of resistances R1, R2, and R3 are connected in form of a "star" (Y, right in 

Fig. IV.3), whilst the resistors R12, R23, R13 in form of a triangle (, left in Fig. IV.3). 

Calculate the resistances in the (Y) as a function of the resistances in the () and vice versa, if 

it known that the resistances between two equivalent nodes in the two circuits are identical. 

 

Fig. IV.3 

 

Solution:  

The following equations follow from the equivalence condition: 

 

We solve it: 

 first with respect to the unknowns R1, R2, R3  (- conversion) 
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Each resistor of the Y-connection is equal to the product of the resistors in the two closest branches of  

the -connection divided by the sum of the resistors in . 

 then with respect to the unknowns R12, R23, R13  (- conversion) 

 

Each resistor of the -connection is equal to the sum of the possible product combinations of the 

Y-connection divided by the resistance of the Y farthest from the resistor to be determined. 

■▬▬▬▬▬▬▬▬ 

 

Let's now solve two problems by applying the above equivalence condition. 

 

 

 

IV.4 Evaluate the total resistance between nodes A and B given in Fig. IV.4a. 
 Show that the total resistance between nodes A and B equals r, if all appearing resistances are 

identical and equal r. 

 
Fig. IV.4a 

 

Solution:  

Note that the -configuration of resistors R1, R2 and R5 (Fig. IV.4a) can be converted to a 

Y-configuration (Fig.IV4b). 

 
Fig. IV.4b 

We use the solution of problem IV.3. Hence the assignments as follows: 
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As the pairs of resistors RB, R3 and RD, R4 are in series, the network of Fig. IV4b can be transformed to 
the simpler form given below (Fig. IV4c). 

 

Fig. IV4c 

These are the assignments for the resistors RB3 and RD4. 

 

Resistors RB3 and RD4 are parallel connected. This connection and RA are in series which leads to the 
following two equations. 

 

Now we can find the generic solution for RAC: 

 

Finally simplifying the resistance RAC for identical values for all given resistances we get: 
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It is interesting that even for R1 = R2 = R3 = R4 = r it turns out that RAC is also r. 

 

This says that resistance RAC does not depend on the central resistor with resistance R5. 
 
 
Exercise: Repeat the calculation by applying the - conversion on the configuration of resistors 

R3, R4 and R5. 

The TI-Nspire solution is given below. 

 
 
■▬▬▬▬▬▬▬▬ 
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IV.5 Calculate the resistance “observed” between points 1 and 2 of the circuit presented in 
Fig. IV.5. The resistances denoted on the diagram are assumed to be known. 

 

Fig. IV.5 
Solution:  

In order to calculate the required resistance, we make use of the transformations of a  into a Y and 

vice versa derived in the previous example. Each resistor of Y (see Problem IV.3) is equal to the 

product of the resistors in the two closest branches of the  divided by the sum of the resistors in the 

. We replace the 3-4-5  by a Y with resistances a1, a2, a3. The equivalent circuit resulting from such 

a transformation is presented in Fig. IV.5a (right figure with intermediate step left). 

    

Fig. IV.5a 

2
35 35

1 2 3
35 35 35 35

,
2 2

r r r r r r r
a a a

r r r r r r r r r r

  
    

     
 

After a subsequent transformation from the 1-2-4 Y of the resistances r, r and a3 into a  formed by b1, 

b2 and b3 which can be presented a shown in Fig. IV.5b (right). 

    

Fig. IV.5b 
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Each resistor of the  (see Problem IV.3) is equal to the sum of the possible product combination of 

the resistances of the Y divided by  the resistance of the Y farthest from the resistor to be determined. 
So we get the resistances b1, b2, b3  

2
3

1 2 3 3 3
3 3

2 , 2
a r r r r

b b a r a r b r r r
r a a

 
            

Circuit IV.5b can finally be transformed into a simple one which is shown in Fig. IV.5c: 

 

Fig. IV.5c 

31232223211151

1

r

1
=

1
    ,

1

r

1
=

1
    ,

1

r

1
=

1

bcbacbac





  

The resultant resistance c of the given circuit is given by the formula (according to Kirchhoff's laws 

1 2 3

1 1 1
.

c c c c
 


 

All equations deduced  above can easily be transferred to the CAS. Maxima will solve the system of 
equations for the requested resistance c. 

 

We can close with a numerical example entering data for the given resistances: 

 

■▬▬▬▬▬▬▬▬ 
 

The solution of the next problem will be used in the further part of this chapter.  
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IV. 6 Calculate the resistance between points A and B equivalent to an infinitely long circuit 
consisting of resistances R1 and R2 (Fig. IV.6a). 

 

Fig. IV.6a 

Solution:  

The circuit illustrated above can be simplified to the following form; 

 

Fig. IV.6b 

The value of the resistance of such a circuit consisting of an infinite number of elements cannot 
change when an extra element is added: 

 

Fig. IV.6c 

Thus, we obtain the equation: 1

2

1
.

1 1
R R

R R

 


 

We solve this equation for R: 

 

Ignoring the negative solution we receive the final solution for R. 

See also problem IV.22 and IV.23. 

 

■▬▬▬▬▬▬▬▬ 
 

The next problem leads to a system with more unknowns than equations. 
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IV. 7 Calculate the electromotive force E and the internal resistance r of the one cell equivalent 
to two cells of electromotive forces E1 and E2 and internal resistances r1 and r2 (see Fig 
IV.7a and IV.7b), so that the current flowing through resistance R is the same, regardless of 
the value of this resistance. 

         

                                                         Fig. IV.7a                                          Fig. IV.7b 

Solution:  

First we write the equations for both circuits applying Ohm's and Kirchhoff''s laws: 

 - for circuit (a)     - for circuit (b) 

   E1 = I1r1 + I R       E = I (R + r) 

   E2 = I2r2 + I R 

   I = I1 + I2 

Thus, we have five unknowns I, I1, I2, R and r, but only four equations. The question is howto solve 
the problem. 

Let's enter the equations in our computer algebra system. 

 

In the fist step we will treat I, I1 and I2 as unknowns and solve the first three equations only for 
current I. In the second step we will solve the fourth equation for I, too. 

 

As the current should be the same, we equate both expressions for I, receiving one equation for the 
remaining two unknowns, R and r. 
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We rearrange this equation by bringing them over the common denominator: 

 

The coefficients of R and the constant terms as well on both sides of the equation must be equal. 
This leads to another two equations, which then can be solved for E and r. 

 

 
You can easily follow the DERIVE treatment of problem IV.7 
 

 
■▬▬▬▬▬▬▬▬ 
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IV. 8 Calculate the current and the drop in potential at the external resistors in each arm of the 
circuit given in Fig. IV.8. The electromotive forces are equal to E1, E2 and their internal 
resistances are equal to r1 and r2. The external resistances R1, R2, R3 are also known. 

 

Fig. IV.8 

Solution:  

Applying Kirchhoff's laws we write, in accordance with the notation given in Fig. IV.8 the following 
set of equations: 

 I3 = I1 + I2 

 E1 = I1 (R1 + r1) + I3 R3 

 E2 = I2 (R2 + r2) + I3 R3 

The drops in potential are 

 U1 = I1 R1 

 U2 = I2 R2 

 U3 = I3 R3 

We have two possibilities to find all unknowns: enter all six equations and solve the system for I1 to 
U3 or solve the first three equations for I1, I2 and I3 and then substitute for getting the potential drops. 

We choose the first way: 

 

 

■▬▬▬▬▬▬▬▬ 
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IV. 9 The two cells are connected by a resistor of resistance R as shown in Fig. IV.8. 
Electromotive forces of these cells are E1 and E2 and their internal resistances are r1 and r2, 
respectively. Calculate the currents in all the branches of the circuit. 

 

Fig. IV.9 

 

Solution:  

We provide two solution methods. 

Method 1: 

From Kirchhoff's laws we obtain the following equations: 

 for node A:   I1 + I2 = I3 

for sub-circuit ECDF: E1 – E2 = I1 r1 – I2 r2 

for sub-circuit EABF E1 = I1 r1 + I3 R 

 

We solve this linear system for the currents. Then we enter a set of numerical data for a special circuit. 

 

Numerical data: R = 0.6, E1 = 1.6V, E2 = 1.2V, r1 = 1, r2 = 0.5.  

We use the relationship V A  . 

 

 
Exercise: In our solution we used sub-circuit EABF: What do you think will happen when using 
sub-circuit ACDB instead? Confirm your conjecture. 
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Method 2: 

We apply the method of nodal potentials. Let the potentials at node A and B be A  and B  , 

respectively. We can assume B 0  . The voltage UAB between points A and B is  

UAB= A - B = A  

Using Ohm’s and Kirchhoff’s laws we can write: 

1 AB 2 AB AB
1 2 3

1 2

1 2 3

 ,  ,  ,

                        

E U E U U
I I  I

r r R

I I I

 
  

 
 

We enter these equations 

 

and solve them 

 

As should be expected the obtained solution is identical to the result obtained using Method I. 
■▬▬▬▬▬▬▬▬ 
 

 

IV. 10 Calculate the current flowing in all the branches of the circuit presented in Fig. IV.9. The 

following Data are given: R1 = 12, R1 = 12, R2 = 7, R3 = 6, R4 = 5, R5 = 11,  

R6 = 8, E1 = 2V, E2 = 3V, E3 = 1.5V, E4 = 2.5V, E5 = 3V. 

 
Fig. IV.10 
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Solution:  

The equations following Kirchhoff's laws are of the form: 

First we write the equations for both circuits applying Ohm's and Kirchhoff's laws: 

 - for the nodes     - for the sub-circuits 

   I5 = I1 + I3       E1 + E5 = R1 I1 + R5 I5 + R6 I6 

   I4 = I3 – I2       E3 – E4 = R2 I2 – R4 I4 + R6 I6 

   I6 = I1 + I2       E3 + E4 + E5 = R3 I3+ R4 I4 + R5 I5 

Let's solve the system for the currents considering the given data – without displaying the general 
solution. 

 

 

Notice the different forms of the numerical results: 

 as rational number in %o10 

 as a long decimal number in %o11 (16 significant digits) 

 as a floating point decimal number, e.g. 1.17b–2 = 1.1710-2 

■▬▬▬▬▬▬▬▬ 
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IV. 11 Calculate the current in all arms of the circuit presented in the bridge circuit (Fig. IV.11). 
Bridge circuit is a configuration which has a lot of applications (see 
https://en.wikipedia.org/wiki/Bridge_circuit). 

The values of voltages and resistances denoted in the diagram are as follows: R1 = 13,  

R2 = 5, R3 = 18, R4 = 15, R5 = 10, R6 = 13, E1 = 2V, E2 = 2.5V, E3 = 1.2V,  

E5 = 2V, E6 = 3V. 

 
Fig. IV.11 

Solution:  

We will present two methods for solving this problem. 

Method 1:  

As in the previous problem we set up a system of equations satisfying Kirchhoff's laws: 

 - for the nodes     - for the sub-circuits 

   I4 = I1 + I2       E1 + E6 = R1 I1 + R4 I4 + R6 I6 

   I5 = I2 – I3       E2 + E5 = R2 I2 + R4 I4 + R5 I5 

   I6 = I1 + I3       E3 – E5 + E6 = R3 I3– R5 I5 + R6 I6 
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Method 2:  

We apply the method of sub-circuits (meshes). This method enables the writing of n – m + 1  
(= number of meshes) linear equations for a circuit with n branches and m nodes in the form  

0 0
1

,        ( 1,  2,  ..., 1)
number of meshes

i j j i
j

R I E i n m


      

where: Rij – the resultant resistance of the common branch of sub-circuits i and j (i ≠ j, Rij < 0 if the 
assumed directions of current are opposite, Rij > 0 if they are the same); Rii – the resistance of the i-th 
sub-circuit; I0i – current in the i-th sub-circuit; E0i – resultant electric potential of the i-th sub-circuit. 
To avoid misunderstanding between I01 and I1 we write Ia, Ib, Ic for I01, I02, I03 and Ea, Eb, Ec for E01, 
E02, E03. We obtain the following system of linear equations for the three meshes: 

(R1 + R4 + R6) Ia + R4 Ib + R6 Ic = E1 + E6  R11 Ia + R12 Ib + R13 Ic = E01 = Ea 

R4 Ia + (R2 + R4 + R5) Ib – R5 Ic = E2 + E5  R21 Ia + R22 Ib + R23 Ic = E02 = Eb 

R6 Ia – R5 Ib + (R3 + R5 + R6) Ic = E3 – E5 + E6  R31 Ia + R32 Ib + R33 Ic = E03 = Ec      

This system and its solution can be written in matrix form: 

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

1
R R R Ia Ea Ia R R R Ea

R R R Ib Eb Ib R R R Eb

R R R Ic Ec Ic R R R Ec


           
                          
                      

 or short I = R-1  E. 

Now see the Maxima-realization which fortunately gives the same results as method 1: 
 

 

■▬▬▬▬▬▬▬▬ 
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IV. 12 Applying Maxwell's principle, derive the ratio of the currents flowing through the parallel 
connected resistors R1 and R2 as given in Fig. IV.12. 

 

Fig. IV.12 

 

Solution:  

In accordance with Maxwell's principle, the power generated in the circuits is the minimal possible. 
The power generated across a resistor R, with a current I flowing through may be written as the 
function 

  2,P I R I R  

The power generated in the whole circuit is the sum of the powers generated across each resistor. 
The sum of the currents flowing through the resistors gives the resultant current 

I = I1 + I2 or I2 = I – I1. 

It can be easily noticed that the last equation, will eliminate variable I2 from the function describing 
the resultant power. Considering necessary condition for the minimum value of the function defining 

the total power 2 2
1 1 2 2( ) ( )P I R P I R generated in the circuit (the derivative must be equal to zero), we 

obtain current I1. 

 

Using this result we can calculate the required ratio of the currents which turns out to be inversely 
proportional to the ratio of the resistances as expected. 

■▬▬▬▬▬▬▬▬ 
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IV. 13 We consider a battery of N cells. The electromotive force of each of the cells is equal to E and 
the internal resistance of each cell is Ri. The cells are connected in m branches each of them 
containing n cells connected in series. Such a system is connected to a resistor of resistance R. 
How should such a network of cells be arranged in order to give the greatest possible power 
across the resistor R? 

 

Solution:  

We have to find natural numbers n and m. The electromotive force of each row (series connection) 
is given by 

Es = n E, 

and its internal resistance 

Rs = n Ri 

These rows are connected parallel, thus the equivalent electromotive force of the battery as a whole 
is equal to 

Ebat = Es. 

The resultant internal resistance of the battery is equal to 

s
bat .

R
R

m
  

In accordance with Ohm's law, the current in the circuit is given by 

bat

bat

.
E

I
R R




 

The power generated across the external resistor is given by 

P = I2 R. 

First of all we enter all what we know so far: 

 

As we want to find the maximum power we have to calculate the zeros of the first derivative of 
function P wrt to R. 

N = n m is the total number of cells. 

 

For physical reasons we are only interested in the nonnegative solutions with , .n m  

To make sure the extremum we have found is a maximum we should check the sign of the second 
derivative for the solution obtained. 
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%o10 shows that the power obtained from the battery is in fact the maximum power if we take care 
that m and n are chosen according to %o7. 

■▬▬▬▬▬▬▬▬ 
 

IV. 14 We have three identical cells with an electromotive force of E and an internal resistance of r. 
How should these cells be connected to each other to serve as battery, in order to give the 
maximum current across an external resistance of R? 

 

Solution: 

It is sufficient to consider and to compare the four configurations of connecting the cells to a circuit 
as illustrated in Fig. IV.14a –  d. 

 

Fig. IV.14 

The other possible ways of connecting the cells involve different polarization of the cells, and are 
thus less favourable. 

Using Kirchhoff's laws we get the following equations for the four circuits: 

(a) 

 
1

1 1 1 3a a

r
E I R I R

r r r

 
         

   
 

 

(b) 

1

1

2 ( )

( )
b

b b

E I r r I R

E I I r I R

  
   

 

(c) 

 1

1

2

2 ( )
c c

c c c

E I r I r I R

E I I r I r I R

  
    

 

(d) 

 3E = Id (3r + R) 

 

We enter the equations or the systems of equations and then solve them for the currents Ia to Id  
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This was the easy part which could have been done – maybe in less time – without CAS. But the 
problem is not yet solved. 

To continue the comparison procedure of the currents we assign variable names to each of the 
solutions from above: 

 

We introduce a positive parameter  defining the ratio of the resistances 
R

r
 to make the 

comparison of the currents easier. 

 

Circuit (a) is the most favourable if the following inequalities hold: 

, , i.e. 1, 1, 1.a a a
a b a c a d

b c d

I I I
I I I I I I

I I I
       

We solve the system of inequalities given above (loading a special package "to_poly_solve" 

first). 
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From %o17 we can conclude that circuit (a) is the most favourable for a ratio of resistances in the 

range 
2 2 2

0 or 0 or .
3 3 3

R r
R

r
      

The approach for the remaining cases is similar: 

 

Circuit (b) is the best in the range 
2 2

1 or
3 3

R r
R r

r
    , 

Circuit (c) is the best for 
3 3

1 or
2 2

R r
r R

r
     and circuit (d) is the best for 

3 3
or .

2 2

R r
R

r
   

As can easily be seen all intervals are open. We will check now how the circuits behave when the 
ratio of the resistances is at one of the boundaries of these intervals? What do you expect? 

 

We have 1a

b

I

I
  which says that the same current flows in both circuits. 

 

For a ratio of 1 the same current flows in circuits (b) and (c) and for the ratio 1.5 the same current 
flows in circuits (c) and (d). 

We could also evaluate the currents for the boundaries, e.g. for the first case: 

 

We find the maximum value 1*E/r  for circuits (a) and (b). 
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We might ask ourselves how DERIVE and/or TI-NspireCAS will perform solving the 
system of inequalities? We enter the definitions of the currents (R = rr) and make the try: 

 

As we can see there is no problem and we don't need any special package or library. The 
CAS-machine of TI-NspireCAS is – more or less – based on the DERIVE core, so we can 
be quite sure that DERIVE doesn't have any problems, too. 

Entering the inequalities and output of the result are very clear. 

■▬▬▬▬▬▬▬▬ 
 

 

In all examples above the currents did not change with time. In the following problems dealing 
with currents varying over time (unstable currents) will be treated. 
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IV. 15 The R-C circuit is given by Fig. IV.14. At time zero the capacitor s not charged and switches 
A and B are open: 

Calculate the charge at the capacitor, the potential across the capacitor and the current at time t 
after closing switch A. 

Find the potential across the capacitor, as well as the current flowing in the circuit as a 
function of time after opening switch A and closing switch B. 

Present the relationships graphically for E = 1, R = 5, C = 4. 

 

Fig. IV.14 

Solution: 

First we write the equation resulting from Kirchhoff’s 2nd law: 

d
where .

d

Q
E I R U I

t
    

The potential across the capacitor is given by the ratio 
Q

U
C

  which leads to 

d
.

d

Q Q
E R

t C
   

After separating the variables and integrating both sides taking into account the initial condition 
Q(t=0) = 0 we can write the equation above in integral form: 

0 0

d d

d d
Q t

Q t

E C Q RC

Q t

E C Q RC







 
 
 


 

The solution with respect to Q gives the charge depending on time. 

 

We store this result as our function Q(t) and proceed calculating the potential and current: 
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Finally we plot the graphs in question. 

The simpler way to solve the problem is to calculate charge Q by applying the built-in ode2 

function and the initial condition function ic1. 

 

The subsequent operations are the same as given above. 

 

What will happen after closing switch B and opening switch A? 

The capacitor discharges, thus we have 

1
1

, .
RC

RC E e
U E e I

R




    

■▬▬▬▬▬▬▬▬ 
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IV.16 Given is a R-C circuit consisting of time dependent electromotive force of the form 

0( ) cos( ),V t V t a resistor R and a capacitor C, connected in series. 

a) Calculate the charge Q(t) when Q(0) = Q0, 

b) Plot the graph of Q(t) for Q0 = V0 = R = C = 1,   = 5. 

 

Solution: 

We have to solve the following differential equation: 0

( )
( ) cos( )

Q t
RQ t V t

C
    

which can be rewritten in the equivalent form 

0 cos( )( )
( ) .

V tQ t
Q t

C R R

    

We use the built-in ode2-function together with ic1 in order to find the particular solution as we did 

in problem IV.15: 

 

We substitute the data and plot the graph: 
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We will solve problem IV.16 using a TI-NspireCAS-toolbox which was produced by Michel 
Beaudin form Ecole de Technologie Supérieure, Montreal (ETSM), for his students. 
 
The syntax for treating a R-C-circuit is – using the variable names from above – 

cir_rc(R,C,V,Q0). 

 

Please compare the results 
 

■▬▬▬▬▬▬▬▬ 
IV.17 Given is a R-L circuit consisting of time dependent electromotive force of the form 

0( ) cos( ),V t V t a resistor R and an inductor L, connected in series. 

a) Calculate the charge Q(t) and the current I(t) when Q(0) = Q0 and I(0) = 0 

b) Plot the graphs of Q(t) and I(t)  for Q0 = V0 = R =  = 1, L = 2. 

 

Solution: 

We have to solve the following differential equation: 

0( ) ( ) cos( ).LQ t RQ t V t    
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It remains to calculate the two constants of integration. 

 

Now we can define charge Q(t) and I(t) as the derivative of the charge: 

 

We calculate charge and current for the given data  

 

Finally we prepare for plotting and then we plot the requested functions: 
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Let's try Michel Beaudin's toolbox once more. There is also a function provided for treating 
an R-L-circuit: 

 

 

■▬▬▬▬▬▬▬▬ 
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IV.18 The R-L-C circuit illustrated in Fig. IV.18 is composed of a coil of resistance R and 
inductance L, together with a capacitor of capacitance C. The charge accumulated on the 
capacitor is Q0. The capacitor discharges after closing switch K. Find the charge on the 
capacitor as a function of time. 

 

Fig. IV. 18 
 

Solution: 

We have to solve the following differential equation: 

d
0.

d

I Q
L R I

t C
    

where 
dQ

I
dt

  denotes the current. Thus, the charge on the capacitor is given by the differential 

equation 
2

2

d d 1
0 0.

d d

Q R Q Q R
Q Q Q

t L t LC L LC
         

 

We try to solve this equation by applying function ode2: 

 

The above solution is correct for C (C R2 – 4L) < 0. 

In the next step we evaluate the integration constants by applying function ic2: 
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The particular solution Q(t) can be rewritten in simpler form. Namely replacing the sub-expression 
2

2

1 4

2

R

LC L
  with  which exhibits damped oscillations (numerical data: Q0 = R = L = 1,  = 5). 

(If  = 5 then C = 4/101.) 

 

 

 

We would like to present solution curves Q(t) with various values for . For this purpose we define 

function Q_ and plot its graph with  = 2, 5, 10 and 20. 

We shift each function graph by 2 in y-direction. 
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If the parameters of the problem satisfy the inequality C (C R2 – 4L) > 0 we get in a similar way: 
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It can easily be seen that in this case charge Q(t) exponentially decreases with time. The graphical 
representation is following. 

 

 

How to do with DERIVE and TI-NspireCAS? 

We solve this equation by applying the DSOLVE2_IV function: 

 

Simplifying #3, we get very bulky result in which the functions SIGN and ABS appear. 
Therefore we omit displaying it. By declaring the appropriate domain for the variable L We 
get the solution in a slightly simpler form (we also omit displaying it)  with subexpressions 

of the form  2 4 / .CR L C  

 
Therefore, further simplification of Q(t) can be carried out, depending upon the values of 
the expressions under the square roots.  

Suppose the parameters of the exercise satisfy the inequality 
2 4

0
C R L

C


 . Then replacing 

2 4C R L

C


 by –2 in function Q(t) gives a much simpler expression 

 

which exhibits damped oscillations.  
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For Q0=1, C=4/101, R=1, L=1 and  = 10 we get 

 
which is identical with the Maxima-solution. 

In a similar way we get the solution for the other case: 

 

We don't show the graphs. Finally we will try solving the problem with TI-NspireCAS: 
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It is not surprising that the solution appearing is also a very bulky expression. But it needs 
only little work to obtain the solutions for our data from above. 

 

Nice graphs are in return for our efforts. 

■▬▬▬▬▬▬▬▬ 
 

 

The following examples of this part are more complicated. 
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IV.19 Fig. IV.19 shows a circuit. Calculate the frequency and the form of the oscillations in this 
circuit. 

 

Fig. IV.19 

Solution: 

We postulate that the dependence between the charge on the capacitors and time is harmonic as 

, 1,2,3.i t
k kQ A e k   

 

We enter these dependencies together with the relations resulting from the application of 
Kirchhoff's laws, first for each junction and then for each circuit: 

 

Factor e it differs from zero, thus we can rewrite the equations in the following simpler 

form: 
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We obtain a non-trivial solution of a homogeneous system of linear equations, if the 
determinant of the matrix of coefficients is equal to zero. Applying this condition leads to 
the following matrix: 

 

The solution with respect to  gives the required frequencies in the circuit. Because of physical 

reasons we are only interested in the positive solutions. 

 

1 2

0

1 1
,

( 2 )LC L C C
  


 

In order to calculate the amplitudes Ak it is necessary to solve the system of equations eqs (%i9) 

for both frequencies. We start with 1: 

 

Solution %o14 indicates that there is no change of charge at the capacitor C0 (A2 = 0) whereas the 
charges at the other capacitors are equal (A1 = A3). 

Proceeding in a similar way for the next frequency we get: 

 

The charges at Capacitors C1 and C3 have opposite phases (A1 = -A3). 

Resuming the solutions (the amplitudes) can be rewritten in the form: 

 for  = 1: A1 = A3 = const1, A2 = 0 

 for  = 2: 0 0
1 2 3, 2,

2 2

C C
B B const B     



43 

 

The charges on the capacitors are a linear combination of these solutions: 

 

In the final step we calculate the real values of the charges on the capacitors. 

 

Constants const1 and  const2 can be found from the initial conditions. 

 

As  an exercise we will analyse the obtained results for two cases: 

First case is for C0 = 0 (no coupling): 
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-2
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Q(3,t)

 

Graphs of Q(1,t) and Q(3,t) are identical. 

Second case is for = C0 >> C, C0 = 10-4: 

 

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.001  0.002  0.003  0.004  0.005

Y

X

Co=10-4, C0>>C

Q(1,t)
Q(2,t)
Q(3,t)

 

■▬▬▬▬▬▬▬▬ 
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IV.20 Show that one can choose the resistors R1 and R2 in the circuit given in Fig. IV.20 in 

such a way that the impedance of the circuit is real regardless of the frequency . 

 

Fig. IV.20 

Solution: 

The impedance of the circuit as a whole is given by the relationship 

1 2

1 1
1 1 1 1

C L

Z

R R R R

 
 

 

where 
1

CR
i C

  denotes the impedance of the capacitor and LR i L  denotes the impedance of 

the solenoid. 

 

We start defining the variables and declaring the domains. 

 

Impedance Z is real if its imaginary part equals zero. Thus, we obtain the following equation which 
we then solve with respect to, e.g. R1. 

 

We are interested in the positive solution only. 

 

The above relationship between R1 and R2 is the result of the condition that the impedance is real. 

We know also that both resistances don't depend on the frequency . Hence the equation 1 0
dR

d
  

must hold. 
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Its positive solution with respect to R2 gives: 

 

Finally we calculate R1 and verify the solution: 

 

It has been shown that for resistances 1 2

L
R R

C
   the impedance of the circuit is real for all 

frequencies. 

■▬▬▬▬▬▬▬▬ 
 

IV.21 A constant potential is connected to a bridge circuit (Fig. IV.21). The bridge was braught to 
equilibrium by changing resistance R2.In equilibrium state the resistances observed were equal 
to R1, R2 and R3. Then a sinusoidal variable potential was connected to the bridge and the 
circuit was brought back into equilibrium by just changing the capacity C. Given R1, R2, R3 
and C calculate the resistance R of the coil and its inductance L. 

 

Fig. IV.21 

Solution: 

Equilibrating the bridge means that there is no current flowing through the galvanometer. Thus, the 
equality of the appropriate drops in potential across the arms of the circuit leads to the equations: 

 for the alternating current 

1 3 2 1 1 2 1

2

1
( ) and ( )

1
I R i L R I R i C I R i L I R

R

  

 
 
       
 
 
 

 

where I1 the current flowing through the coil and I2 the current flowing through the resistor 
R1. 
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 for the direct current 

R1 R3 = R2 R. 

 

 

 
■▬▬▬▬▬▬▬▬ 
 
 

IV.22 We are given an infinite system consisting of capacitors C and inductances L (Fig. IV.22). The 

potential U applied to this system varies according to the formula U = U0 cos( t). Calculate 

the effective current at the voltage input. 

 

Fig. IV.22 

Solution: 

We use the result obtained in problem V.6, when we calculated the resultant resistance of an 
infinite system of resistors. Comparing Fig. IV.6a and Fig. IV.22 it can easily be seen tat the role of 
R1 is taken by the impedance of the inductance ZL, and the role of the resistance R2 is taken by the 
impedance of the capacitor ZC. Thus in accordance with formula %o3 from this problem the 
impedance of the system as a whole is given by 

2 4

2
L L C LZ Z Z Z

Z
 

  with 
1

, .L CZ i L Z
i C




   

The effective current is given by 2

*
0

1
where d

T
eff

eff eff

U
I U U t

TZ Z
    is the potential and the sign 

"*" denotes the complex conjugate. 
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We enter the formulae: 

 

Then we try to evaluate the effective current Ieff: 

 

(atan2(y,x) yields the value of atan(y/x) in the interval -%pi to %pi. atan2 is equal zero, so we 

can simplify the above result by substitution 

 

Now we have to consider two cases: 

For small frequencies one can simplify the function abs and for large frequencies the abs (in 

expression Ieff) can be omitted. 

 

It can easily be noticed that this expression is a decreasing function on frequency . 

Resuming the results %o12 and %o13 can be written together in the concise form of a piecewise 

defined function. 
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The system analysed is thus a low-pass filter. 

We plot Ieff for U0 = 1, L = 1 and C = 1 and get 
 

 

 

 
 

Follow the procedure performed with TI-NspireCAS: 
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The graph of the piecewise defined function: 

 

 
 

■▬▬▬▬▬▬▬▬ 
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IV.23 Show that the circuit (Fig. IV.23) consisting of an infinite number of capacitors and inductors 
is a high-pass filter. 

 

Fig. IV.23 

Solution: 

Again we use the result obtained in problem V.6, when we calculated the resultant resistance of an 
infinite system of resistors. Comparing Fig. IV.6a and Fig. IV.23 it can easily be seen tat the role of 
R1 is taken by the impedance of the capacitor ZC, and the role of the resistance R2 is taken by the 
impedance of the inductance ZL. Thus in accordance with formula %o3 from this problem the 
impedance of the system as a whole is given by 

2 4

2
L C L CZ Z Z Z

Z
 

  with 
1

, .L CZ i L Z
i C




   

 
The Maxima procedure runs very similar to the previous example: 

 

 

 

We have again to distinguish two cases for the absolute value under the square root: 
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The circuit analysed is thus a high-pass filter. 
We define the impedance as a piecewise defined function and plot for L = C = 1. 

 

 

 
 

Exercise: Analyse the properties of the filtering circuits given below. 

 
■▬▬▬▬▬▬▬▬ 
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IV.24 An alternating voltage of the form Uin = U0 (sin( t) + sin(2 t) is applied to the circuit given 

in Fig. IV.24a. Calculate the ratio of the output voltage to the input voltage. 

 

Fig. IV.24a 

Solution: 

The given circuit is equivalent to the circuit presented in Fig. IV.24b. 

 

Fig. IV.24b 

From the voltage divider property it can be concluded that voltage UA and the output voltage satisfy 
the following equation 

C
out A

C

R
U U

R R



 

where RC denotes the impedance of the capacitor 

1
CR

i C
  

It can also be seen from the potential divider property that UA and Uin satisfy the following equation 

1
1 1

.
1

1 1

C C
A in

C C

R R R
U U

R

R R R










 

 

We enter the equations from above: 
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In order to calculate the requested ratio we solve equations eq1 and eq2 for Uin and Uout: 

 

Ratio out

in

U

U
   can be entered in concise form as follows in %i8. cabs delivers its modulus. 

 

The phase shift – exactly the tangent of the phase shift – can be calculated by taking the ratio of the 

imaginary part of  and its real part. 

 

 
■▬▬▬▬▬▬▬▬ 
 

 
IV.25 Two circuits (RL and RC) are given below. An impulse of potential of the form. 

0 1 2

2

for
( )

0 for

E t t t
E t

t t

 
  

 

is applied to these circuits. Calculate the current in these circuits as a function of time. 

 

Fig. IV.25a and IV.25b 
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Solution: 

a) RL circuit (Fig. IV.25a) 

During the flow of current through a coil an electromagnetic force is induced equal to 
d

d

I
L

t
 . 

Taking into account all the drops of potential in the circuit, we can write the current flowing in the 
circuit in the form of a differential equation: 

d
( ).

d

I
L R I E t

t
   

We proceed with solving the equation for each of the three intervals of time in question. 

We start with calculating the general solution: 

For t  t1: 

 

For t1  t  t2: 

 

For t  t2: 

 

In the next step we calculate the constants of integration: 
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Resuming we have 

 

We may write the current at any given moment of time in a compact form: 

 

 

b) RC circuit (Fig. IV.25b) 

For the circuit shown in Fig. IV.24b the charge on the capacitor at time t is given by the equation 

dQ
( ).

d

Q
R E t

t C
   

The solution of the differential equation above may be calculated in a similar way. But from a 
mathematical point of view this equation is of the same type as the one obtained in part (a). 

Therefore replacing I by Q and L by R and R by 
1

C
 in %o16 we may write: 

 

And further the current as derivative of the charge Q(t): 

 

Graphical representation of the currents for both circuits for a set of parameters is presennted below. 
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Let us try another method! We can apply the Laplace transform to solve RL-problem. 
 

 

Maxima can perform the Laplace transform of the unit_step function (and the Dirac -function as 

well) but cannot do the reverse transformation. As we know that F(s) e-as
 gives a product containing 

unit_step(t – a) I invent the respective function for doing the inverse Lapalce transform for this 

special case (ilt(F(s),s,t) is the maxima function for "regular" inverse transforms. 
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We will solve this problem with TI-NspireCAS: 
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■▬▬▬▬▬▬▬▬ 
 
 
 
IV.26 A coil of inductance L, a resistor of resistance R and a capacitor of capacity C are parallel 

connected to an alternating electromotive force E (Fig. IV.26). Find the power generated 

across the resistor as a function of the frequency  of the source. 

 
Fig. IV.26 

 
Solution: 

The power generated across the resistor R is given by the expression 
2

U
P

R
  where U denotes the 

potential across the resistor. From the law regarding a voltage divider, we obtain 

Z
U E

Z r



 

where Z denotes the resultant impedance of the elements R, L, and C respectively connected 
parallel: 

1 1 1 1 1
, ( , ).C L

C L

R R i L
Z R R R i C




      

In the first step we find the resultant impedance. 
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The solution obtained is assigned to Z. Then we evaluate the power P. 

 

We ask for the extremal values of P by applying its first derivative. 

 

From %o8 we see that only one solution makes sense: 
1

.
LC

   

We calculate the maximal power P which is reached for 
1

.
LC

   

 

For the limit values of the frequency the generated power tends to zero when frequency tends either to 
zero or to infinity. 

 

The graphical representation of the generated power is shown below. 

 

■▬▬▬▬▬▬▬▬ 
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IV.27 A potential of the form Uin = U0 sin3(0 t) is applied to the circuit given in Fig. IV.27. The 

parameters of the circuit satisfy the equations 0
2LC = 1 and 0LC = 2. Calculate the 

transmission coefficient of the filter. 

 

Fig. IV.27 

 
Solution:  

The exit potential in the circuit is given by L C
out in

L C

R R
U U

R R R




 
 where 

3
0 0

1
, and sin ( ).L C inR i L R U U t

i C
 


    

We let know all what we are knowing our CAS. 

 

The transmission coefficient is defined to be the ratio between the exit signal and the input signal. 

 

We have to calculate its modulus for the given parameters satisfying the following relations: 

2
0 0 2

0 0

1 2
1, 2 i.e. , .LC RC L C

C R
 

 
     

 

It can be seen from expression (ratio) that at frequency  = 0 no potential is transferred. 

One should ask which frequencies are transmitted through the circuit? To answer this question we try 
to calculate coefficients of Fourier series of the input potential. We notice that Uin is an odd function, 
thus it is sufficient to calculate integrals of the following form 
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It is easy to notice that the above result is equal to zero for n> 3 because the nominator is zero for any 
integer number n, whereas the denominator becomes zero for n> 3. 

It turns out that the input signal is composed of only two frequencies:  = 0 and  = 30. 

As there is no potential transmission at  = 0 it is sufficient to calculate the modulus and the tangent 

of the phase shift of the transmission coefficient for the frequency  = 30. 

 

Exercise: Solve the above exercise for input signals of the following forms: 

U0 sin5(0 t) and U0 sin3(20 t). 
 

■▬▬▬▬▬▬▬▬ 

 
 
 
 
 
All files are available on request. 

 

nojo.boehm@pgv.at 

leon.magiera@wp.pl 

 


