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Introduction 
 

I have been interested in fractals, “Chaos“ and Dynamic Systems since many years. Treating these 
issues became possible for everybody with availability of computers and the respective software. Spe-
cial programs like FractInt have been on the market since long. But now supported by spreadsheets, 
computer algebra and own programming it makes much more sense and fun as well to investigate 
these phenomena. 

By a book review a came across Hartmut Bossel’s “System Zoo” book series. These books are a real 
repository and treasure box for applied mathematics. There was also information about the program 
VENSIM. This is a commercial simulation software free of charge for teaching purposes. 

Then I purchased the System Zoo-CD and was very enthusiastic about the many possibilities using 
VENSIM. My ambition came up to treat a not too complex problem (Tourism and Environment) with 
other tools which are available in our schools. I wanted to learn about the special features, their advan-
tages and disadvantages working through this example.  

I had in mind MS-Excel, DERIVE, WIRIS, TI-NspireCAS and GeoGebra. All these programs offer 
sliders which promised making the simulations much more dynamic varying the parameters. An addi-
tional challenge was to transfer the model into a differential equation or a system of differential equa-
tions and then solving it numerically or – if possible – analytically. 

I was so much fascinated by this first example that I could not resist proceeding and trying other ones. 
So it could happen that the paper comprises more than 100 pages finally. 

My results are aesthetically appealing - at least in my opinion - and they may wake up appetite for 
further experimenting and discovering. The “beautiful” and “strange” attractors might make the sys-
tems of differential equations interesting even for students who are not so enthusiastic with mathemat-
ics. 

Unfortunately I could not address here essential interpretation of the generated tables and diagrams.  
I refer to Bossel’s books and many other resources. 

All files which are presented in this paper are available on request. Please send an email. 

I wish much fun and would be very delighted receiving reactions. 

Josef Böhm 
nojo.boehm@pgv.at 
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1 Tourism and Environment 
An easy simulation – using various tools 

 
 
Among the many complex systems which can be found in Chapter 4 Ecological Systems and Re-
sources in Hartmut Bossel’s System Zoo 2[1,7] one can find as example Z411 Tourism and Environ-
ment. 
 
All System Zoo examples are treated with the excellent simulation software VENSIM PLE[2], which is 
free for educational purposes. 
 
After description of the model I will present performing its simulation first with VENSIM PLE. It will 
be followed by a “reproduction“ with MS-Excel and the VENSIM-results serving as reference.  
 
The model can be described by a system of differential equations. Its numerical solution will be  
achieved applying the Runge-Kutta-method which is implemented in DERIVE. We then can compare 
the results with the results of the discrete model. 
 
Whereas we cannot use sliders in DERIVE which could enable studying the influence of various pa-
rameters on the behaviour of the model, this is possible with GeoGebra[3] and with TI-Nspire[4] as 
well. 
 
Finally we will find the state of equilibrium for important stocks. 
 
 
Description 
 
It is quite sure that there exists a dynamic 
linkage between Tourism (e.g. as measured by 
the number of overnight stays) and the 
Environment Quality. 
 
(1) The Growth of environment quality is 

defined by the ENVIRONMENT REGENER-
ATION RATE and is limited by a logistic 
growth function according to its 
ENVIRONMENT CARRYING CAPACITY. 

       
              Ski resort in the Sierra Nevada, Spain 

(2) Occurrence of an Environmental Stress by Tourism results in a Loss of Environment Quality 
proportional to an ENVIRONMENT DESTRUCTION RATE. 

(3) The Environmental Stress depends on Tourism and on Environment Quality and is proportional 
to both stocks. 

(4) Growth of Tourism depends directly on Environment Quality and can be reinforced by ADVER-

TISING. 

(5) Decrease of Tourism is described by a certain TOURISM DECREASE RATE. 
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The VENSIM-Model 
 
One can load the ready made model[5,7]. But it is much more fruitful to work through this model ac-
companied by the VENSIM-Tutorial[6] and -Manual.  
 
We start sketching the Stock and Flow diagram (simulation diagram): 
 

Environment
Quality Tourism

GrowthE DecreaseE DecreaseTGrowthT

ENVIRONMENT
REGENERATION

RATE

ENVIRONMENTAL
CARRYING CAPACITY ENVIRONMENT

DESTRUCTION RATE

ADVERTISING TOURISM
DECREASE RATE

INITIAL VALUE
ENVIRONMENT QUALITY INITIAL VALUE

TOURISM

Environmental
Stress

Tourism and Environment

 
 
The variable parameters are written in upper case and the stocks in ordinary characters. The boxes 
contain the interesting stocks. 
 
Relationships between the quantities are entered as equations. The summary of all equations is given 
in a VENSIM-document. (In the original document the equations are given in alphabetical order, here 
they are ordered according to the type of the quantities.) I will come back to the “Units” in a later 
chapter. 
 
(17) Tourism = INTEG (GrowthT – DecreaseT, INITIAL VALUE TOURISM) 
 Units: Tourists 
 
(11) GrowthT = ADVERTISING*Environment Quality 
 Units: Tourists/Year 
 
(03) DecreaseT = TOURISM DECREASE RATE*Tourism 
 Units: Tourists/Year 
 
(05) Environment Quality = INTEG (GrowthE – DecreaseE, INITIAL VALUE ENVIRONMENT  
 QUALITY) 
 Units: Quality 
 
(10) GrowthE = ENVIRONMENT REGENERATION RATE*Environment Quality* 
 (1 – Environment Quality/ENVIRONMENTAL CARRYING CAPACITY) 
 Units: Quality/Year 
 
(02) DecreaseE = Environmental Stress*ENVIRONMENT DESTRUCTION RATE 
 Units: Quality/Year 
 
(08) Environmental Stress =  Tourism*Environment Quality 
 Units: Quality*Tourists 
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The parameter values and the initial values for Environment Quality and Tourism are fixed. They can 
be found in the document and also be printed: 
 
(14) INITIAL VALUE TOURISM = 0.1 
 Units: Tourists 
  
(13) INITIAL VALUE ENVIRONMENT QUALITY = 1 
 Units: Quality 
  
(09) FINAL TIME  = 20 
 Units: Year 
 The final time for the simulation. 
 
(04) INITIAL TIME  = 0 
 Units: Year 
 The initial time for the simulation. 
 
(15) SAVEPER  = TIME STEP 
 Units: Year [0,?] 
 The frequency with which output is stored. 
 
(16) TIME STEP = 0.02 
 Units: Year [0,?] 
 
(07) ENVIRONMENTAL CARRYING CAPACITY = 1 
 Units: Quality 
  
(06) ENVIRONMENT REGENERATION RATE = 1 
 Units: 1/Year 
  
(04) ENVIRONMENT DESTRUCTION RATE = 1 
 Units: 1/(Tourists ∗ Year) 
  
(18) TOURISM DECREASE RATE = 1 
 Units: 1/Year 
 
(16) ADVERTISING = 5 
 Units: Tourists/(Quality ∗ Year) 
 
Now we can run the first simulation. Then we will inspect the results in form of tables and diagrams as 
well. 
 

    

Begin of the Environment Quality-table (left) and end of the Tourism-table (right) 
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The diagram shows the development of Environment Quality, Tourism and Environmental Stress for a 
period of 20 years. 
(Take notice of the different scaling on the vertical axis.) 
 

Environment Quality and Tourism
2 Tourists
1 Quality
2 Tourists*Quality

1 Tourists
0.5 Quality

1 Tourists*Quality

0 Tourists
0 Quality
0 Tourists*Quality

0 2 4 6 8 10 12 14 16 18 20
Years

Tourism : run1 Tourists
Environment Quality : run1 Quality
Environmental Stress : run1 Tourists*Quality

 
 
If we are interested in the relationship between Tourism and Environment Quality then we can plot the 
respective phase diagram (and pose and answer questions like the following). 
 
What is the effect of more or less advertisement?  
We compare ADVERTISING = 5 with ADVERTISING = 1: 
 

Tourism & Quality
1

0.75

0.5

0.25

0
0.10 0.30 0.50 0.70 0.90 1.10 1.30 1.50 1.70 1.90

Tourism

Environment Quality : run1 Quality
   

Tourism & Quality
1 Quality
1 Quality

0.5 Quality
0.5 Quality

0 Quality
0 Quality

0.10 0.30 0.50 0.70 0.90 1.10 1.30 1.50 1.70 1.90
Tourism

Environment Quality : run1 Quality
Environment Quality : run2 Quality

  
ADVERTISING = 5 (left) compared with ADVERTISING = 1 (right). 

 
We see that increasing advertising results in a remarkable short-term growth of Tourism but also in 
remarkable loss of Environment Quality. 
 
Phase diagrams for ADVERTISING = 1, 2, 3, … could be displayed on the same axes. 
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The MS-Excel-Model 
 
The “equations“ of the VENSIM-model can be transferred 1:1 into the spreadsheet. 
 

 
 
The respective equations are: 
 
Time Growth E Decrease E Growth T Decrease T Env Stress 
0      
=C3+$B$12 =$B$7*I4*(1-I4/$B$6) =$B$8*H4 =$B$10*I4 =$B$9*J4 =I4*J4 

 
Env Quality Tourism 
=B4 =B5 
=I3+(D3-E3)*$B$12 =J3+(F3-G3)*$B$12 

 
 
The last rows of the columns for Env Quality and Tourism are: 
 
0.166318761 0.83862131 
0.166302328 0.838480759 
0.166286419 0.838341377 

 
We can compare these values with the output of the VENSIM-model. 
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The Differential Equation Model with DERIVE 
 
The system of differential equations for u (Environmental Quality) and v (Tourism) can easily be de-
rived from the description. The system reads as follows: 

1 eqeq err eq edr eq to
ecc

to adv eq tdr to

 ′ = ⋅ ⋅ − − ⋅ ⋅ 
 

′ = ⋅ − ⋅
 

 
The Runge-Kutta method for numerical solution of a DE-system is implemented in DERIVE. 
Hence: 
 
env_tour(err, edr, tdr, adv, ecc, eq_start, to_start, dt, n) ≔  
      RK([err·eq·(1 - eq/ecc) - eq·to·edr, adv·eq - tdr·to], [t, eq, to],  
      [0, eq_start, to_start], dt, n) 

 

 
 

The graphs of Environment Quality and Tourism are well known.  
 
The last row of the table reads: 

  
We plot the phase diagram for ADVERTISING adv = 5: 
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Applying the VECTOR-command we can plot all phase diagrams for adv = 1 through adv = 7 on the 
same axes: 
 

 
 

 
 

Later the DE model will help to find possible fix values. 
 

The DERIVE implemented slider bars cannot be applied for studying the influence of various parame-
ters. The reason for this lies in the DERIVE programming. The RK-routine is based on a recursive 
structure which needs too much memory when used with general parameters. To study the influence of 
the parameters better I will try to model the problem with GeoGebra and with TI-NspireCAS. How-
ever, there is also an attractive way for varying the parameters with VENSIM (see end of the chapter). 
 
 
The GeoGebra-Model 
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It doesn’t need much time to set up the model but with dx = 0.02 we will meet very extended calcula-
tion times with this large GeoGebra spreadsheet. It can happen that the system hangs up completely. 
Working with dx = 0.05 is successful. 
 
I can display the phase diagram in the second plot window. 
 
 
 
How to do it with TI-NspireCAS 
 
I found much better calculation properties using the spreadsheet application of TI-NspireCAS (Version 
3.0). It is no problem at all running 500 time steps of 0.02 years. 
 
For the parameters connected with the bold presented values sliders must be introduced in the Graphs 
Application. 
Then we can run the simulation in the Lists & Spreadsheet application. The values set by the sliders 
are valid in the spreadsheet, too, because the variables are linked. 
 

 
 
 
Enter the list names in the very first rows of columns C, I, J, and K. The list names serve for comfort-
able plotting the scatter diagrams. 
 
The calculated points are presented connected and according to the choice of the lists we get very at-
tractive graphs which are reacting immediately on the sliders.  
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See the phase diagram for adv = 2: 
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SyntheSim with VENSIM 
 
VENSIM offers a kind of sliders, which allows inspecting all stocks (box variables) and flows simulta-
neously when changing the parameters. However, the inspection windows are quite small. SyntheSim 
is activated via the menu bar and results in a display as follows. 

 
 
I turned some “parameter screws“ and you can see the graphs in blue in the mini-windows. However, 
when moving the mouse over these mini windows they change their size offering a larger display. 

We inspect the display of Tourism, Environment 
Quality and Environment Stress for the changed 
parameter values. 
 
 
These graphs are not of the quality of Nspire- or 
GeoGebra-diagrams, but they can be produced 
without any additional effort. It is not possible to 
use SyntheSim for displaying phase diagrams. 
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Analytical calculation of the fix values for Environment Quality and Tourism 
 
The fix values are the results of the demand that change rates of the stocks must become zero.  
 
Therefore, we try to solve the following system of equations (with DERIVE): 
 

 
  
Compare the last rows of the tables of the models from above for  adv = 5 on page 8! 
 
 
 
 
 
 
[1] Hartmut Bossel, System Zoo1, 2, 3, Books on Demand, Norderstedt 

http://www.hartmutbossel.de/ezooinf.htm 

[2] Vensim PLE, Simulationssoftware, für den Unterrichtsgebrauch, download free of charge 
at: http://www.vensim.com/download.html 

[3] http://www.geogebra.org 

[4] http://education.ti.com 

[5] Hartmut Bossel, Systemzoo, coTec Verlag Rosenheim (CD inkl. VensimPLE) 
 http://www.cotec-verlag.de 

[6] http://www.public.asu.edu/~kirkwood/sysdyn/SDRes.htm 

[7] http://www.usf.uni-kassel.de/cesr/index.php?option=com_remository&Itemid= 
141&func=fileinfo&id=109 
(The ZOO MDL.zip archive contains English language versions of all computer simulation models) 
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2 Predator and Prey (times 2) 
A Variation of the classic Predator-Prey-Model 

 
A predator population takes its energy mainly from two prey populations. 
 
The stock of predators is coupled with the stocks of the prey populations by its hunting successes 
when meeting (with the respective success rates). The prey stocks are increasing with – different – 
growth rates. We have success rates of the predators and on the other hand we have specific loss rates 
of the prey. 
 
Again we start with the VENSIM PLE stock and flow diagram and the description of the parameters 
and definition of the equations. 
 

Stock Prey A Stock Prey B

Stock
Predators

Increase Prey A Increase Prey B

Increase
Predators

Loss Prey A Loss Prey B

Loss Predators

GROWTH RATE A GROWTH RATE B

WIN BY A

WIN BY B

INI VALUE A INI VALUE B

INI VALUE
PRED

LOSS RATE A
LOSS RATE B

Encounters A-Pred Encounters B-Pred

ENERGY
CONSUMPTION RATE

PRED

Predator Population with
two Prey Populations

 
 
All parameters and necessary equations are entered and can then be checked and printed in the  
VENSIM-document. I did without entering units. Adding units makes a dimension analysis possible.  
I also suppressed numbering of the entries. 
 

INI VALUE A = 1 
  

INI VALUE B = 1 
  

INI VALUE PRED = 1 
  

WIN BY A = 0.1 
  

WIN BY B = 0.1 
  
 LOSS RATE A = 0.1 
  
 LOSS RATE B = 0.1 
  
 GROWTH RATE A = 0.1    Lioness in Serengeti NP, Tanzania 
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 GROWTH RATE B = 0.12 
  
 ENERGY CONSUMPTION RATE PRED = 0.1 
  
 Increase Prey A = GROWTH RATE A ∗ Stock Prey A 
  
 Increase Prey B = GROWTH RATE B ∗ Stock Prey B 
  
 “Encounters A-P“ = Stock Prey A ∗ Stock Predators 
  
 “Encounters B-P“ = Stock Prey ∗ Stock Predators 
  
 Loss Prey A = LOSS RATE A ∗ “Encounters A-P“ 
  
 Loss Prey B = LOSS RATE B ∗ “Encounters B-P“ 
  
 Increase Predators = WIN BY A ∗ “Encounters A-P“ + 
                                   WIN BY B ∗ “Encounters B-P“ 
  
 Loss Predators = ENERGY CONSUMPTION RATE PRED ∗ Stock Predators 
  
 Stock Prey A = INTEG (+Increase Prey A – Loss Prey A, 
           INI VALUE A) 
  
 Stock Prey B = INTEG (+Increase Prey B – Loss Prey B, 
           INI VALUE B) 
  
 Stock Predators = INTEG (+Increase Predators – Loss Predators, 
   INI VALUE PRED) 
  
 INITIAL TIME = 0 
 Units: Month 
 The initial time for the simulation. 
  
 FINAL TIME  = 200 
 Units: Month 
 The final time for the simulation. 
  
 SAVEPER  = TIME STEP  
 Units: Month [0,?] 
 The frequency with which output is stored. 
  
 TIME STEP  = 0.1 
 Units: Month [0,?] 
 The time step for the simulation. 
 
 
 

Some prey in Serengeti National Park, Tanzania 
I changed the order of the document output. 
 
 
In Bossel’s original model a time step of 0.05 is used. Taking 0.1 does not result in a recognisable 
change for the worse. 
 
 
 
 
In the following the diagrams and the table can be produced, displayed and printed. All the diagrams 
and tables can easily be transferred to other documents with Copy and Paste.  
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Predator with 2 PreyPops
3

2

1

0
0 20 40 60 80 100 120 140 160 180 200

Time(Months)

Prey A 3
Prey B 3
Predators 3

 

These are the last rows of the table (for a later comparison): 

    
                            Euler method                                                    Runge-Kutta-method 

For the numerical calculation we can choose between EULER-method and RUNGE-KUTTA-method. 
The graphs presented here are based on the EULER-method realization. 

Phase Diagrams
2.5

2

1.5

1

0.5

0
0.40 0.60 0.80 1 1.20 1.40 1.60 1.80 2 2.20 2.40

Predators

Prey A
Prey B
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I change some parameter values as follows: 
 

GROWTH RATE A = 0.15 
LOSS RATE A = 0.15 
WIN BY A = 0.12 
 
SAVEPER = 1 
 

Pred-2 Prey-Var
2 Prey A
2 Prey B
4 Predators

1 Prey A
1 Prey B
2 Predators

0 Prey A
0 Prey B
0 Predators

0 20 40 60 80 100 120 140 160 180 200
TIME (Months)

Prey A Prey A
Prey B Prey B
Predators Predators

 

The values at the end of the months are saved and printed in tables and graphs (SAVEPER = 1). 
 
 
 
The differential equation model with DERIVE 
 
For treatment with DERIVE I rewrite the problem as a system of ODEs which then will be solved nu-
merically using the Runge-Kutta-algorithm. I can use the System Zoo-time step = 0.05. Then I will 
compare the resulting values for the last months with the values obtained with VENSIM PLE.  
 

( )pr pr wa pa wb pb lr
pa ga pa pr pa la
pb gb pb pr pb lb

′ = ⋅ + ⋅ −
′ = ⋅ − ⋅ ⋅
′ = ⋅ − ⋅ ⋅

; pr(0) = pa(0) = pb(0) = 1 

 
The respective function with all parameters can be defined … 
 

  
… and then be evaluated (compare with the last rows of the VENSIM-table!). 
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Finally we will create the phase diagrams selecting the respective columns of the matrix: 
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The MS-Excel-Model 
 
The equations of the VENSIM-model can easily be transferred into the spreadsheet. 

 

 
 

It is no problem at all producing the time diagrams (I don’t present the phase diagram). 
 

Predators and 2 Prey Populations

0

0,5

1

1,5

2

2,5

3

-20 0 20 40 60 80 100 120 140 160 180 200 220

Time in months

Po
pu

la
tio

ne
n

Stock A
Stock B
Stock Predators

 
Compare again the values given in the last rows of the Excel table (2000 rows!) with the respective 
VENSIM- and DERIVE-values: 

 
Stock A Stock B Stock Predators 

0.01051026 0.573381557 2.21030495
0.01038306 0.567588655 2.20110769
0.01025834 0.561906481 2.191818393
0.01013608 0.556333389 2.182441023
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In System Zoo 2 we find the question which provision(s) could (should) be taken that population A 
despite its shortcoming by its growth rate could survive population B? 
 
This question could be answered much more comfortable applying sliders. We will introduce sliders in 
Excel in a later chapter. 
 
GeoGebra offers sliders but larger tables like this one need (too) long calculation times. We introduce 
sliders with TI-NspireCAS. 
 
 
Working out with TI-NspireCAS 
 
In order to keep calculation time reasonable we take a time step of 0.25 (in System Zoo we have 0.05!). 
 

   
The table for “only“ 125 months: 
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The stocks for A, B and the predators after 125 months (end of the table) are: 0.1716, 2.0971 und 
1.1919. The respective values in the Excel-table are: 0.1590, 1.9387 und 1.3307. 

 
The diagram looks very similar. It seems that the very rough simplification does not make worse the 
modelling. 
 
What could be done supporting prey population B to survive population A? 
 

 
 
The diagram shows that appropriate steps should be taken to decrease the loss rate of A and to simul-
taneously increase the loss rate of B. A must be made “less attracting“ for the predators. Is it possible 
to adopt such protection mechanisms? 
 
Finally we create the predator-prey phase diagrams for this “future“ model: 
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3 Collapse of an Ecosystem 
A more complex simulation with a historical background 

 
Bossel cites a source which explains the collapse 
of the white-tailed-deer population in the Kaibab 
Forest (North Rim of Grand Canyon) as a conse-
quence of shooting the predators which feed on 
these deer. 

Prior to 1907 there was a population of approx 
4000 deer living on an area of about 320 000 ha. 
Within a period of 15 to 20 years hunting preda-
tors (cougars, wolves and coyotes) was forced 
and about 8000 of them were shot. This was fol-
lowed by an enormous growth of the deer popu-
lation. Sycamore Canyon, Kaibab National Forest 

 
White-tailed-deer (Odocoilus virginianus) 

It was 1918 when the stock of deer had more than 
decupled. This caused an overexertion of food 
supplies. Until 1924 the deer population reached 
a number of 100 000 animals. Caused by lack of 
food 60% of the animals perished in the follow-
ing two winter periods. 

Vegetation was destroyed in such a way, that 
only half of the deer population compared with 
its size before this development could exist in the 
long run. 

1974 tried Goodman to simulate this system by a model which delivered results matching satisfying 
with the real process.  

 
Explanation of the model 
 
The Deer feed on an AREA (320 000 ha) on Food. Increase Food is governed by its Regeneration 
Time. The Growth rate Deer is a function of Food Supply. This is the amount of food available for 
each animal. Food Demand depends on the stock of Deer and on the DAILY REQUirement of one deer 
(2000 Kcal). Food grows again according to the MAX FOOD CAPACITY (480 Mio Kcal). Increase 
Food is determined by the Regeneration Time which is a function of Vegetation Density. 

What about the predators? The Deer population suffers Loss Deer by the PREDATORS, whose number 
decreases linearly caused by shooting numbers. The Prey rate  is a function of the Deer Density 
(= deer/ha). 

A more detailed explanation of the parameters is given in System Zoo. 

Especially interesting is the use of functional dependencies which are given by tables (= nodes of the 
describing functions). We will find these tables in the document under WITH LOOKUP. 
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The simulation is running for 50 years with an increment of 0.25 years. 

Note the use of the IF-function with its syntax very similar to the syntax used in Computer Algebra 
Systems. 

Deer

Food

INI DEER

INI FOOD

Increase Deer Loss Deer

Increase Food Grazing Loss

Growth rate
Deer

Food Supply Food Demand Deer Density

Prey rate

Regeneration
Time

Vegetation
Density

PREDATORS

AREA

DAILY REQU

FEEDING
PERIOD

MAX FOOD
CAPACITY

<Time>

DEER COLLAPSE IN KAIBAB FOREST

 
 
The document comprises all constants, all equations and all simulation parameters (originally pre-
sented numbered and in alphabetical order): 
 
(01) AREA = 320000 
  
(02) DAILY REQU = 2000 
  
(03) Deer= INTEG (+Increase Deer – Loss Deer, INI DEER) 
  
(04) Deer Density =  Deer/AREA 
  
(05) FEEDING PERIOD = 1 
  
(06) FINAL TIME = 50 
  
(07) Food = INTEG (+Increase Food – Grazing Loss, INI FOOD) 
  
(08) Food Demand = DAILY REQU ∗ Deer 
  
(09) Food Supply = Food/Deer 
  
(10) Grazing Loss =  
  IF THEN ELSE( Food Demand >= (Food/FEEDING PERIOD), 
  Food/FEEDING PERIOD, Food Demand ) 
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(11) Growth rate Deer = WITH LOOKUP (Food Supply, ([(0,-1)-(10000,1)],  
  (0,-0.5), (500,-0.15),(1000,0),(1500,0.15),(2000,0.2) ,(200000,0.2))) 
  
(12) Increase Deer = Growth rate Deer ∗ Deer 
  
(13) Increase Food = (MAX FOOD CAPACITY – Food)/Regeneration Time 
  
(14) INI DEER = 4000 
  
(15) INI FOOD = 4.7e+008 
  
(16) INITIAL TIME = 0 
 
(17) Loss Deer = Growth rate Pred ∗ PREDATORS 
  
(18) MAX FOOD CAPACITY = 4.8e+008 
  
(19) PREDATORS = WITH LOOKUP (Time, ([(0,0)-(50,300)], 
  (0,265),(5,245),(10,200),(15,65),(20,8),(25,0),(30,0), (35,0),(40,0),(50,0) )) 
  
(20) Prey rate = WITH LOOKUP (Deer Density, ([(0,0)-(0.35,60)], (0,0), 
  (0.0125,3),(0.025,13),(0.0375,28),(0.05,51),(0.0625 ,56),(0.125,56),(0.4,56))) 
  
(21) Regeneration Time = WITH LOOKUP (Vegetation Density,([(0,0)-(1,40)], 
  (0,35),(0.25,15),(0.5,5),(0.75,1.5),(1,1))) 
  
(22) SAVEPER = TIME STEP 
 
(23) TIME STEP = 0.25 
 
(24) Vegetation Density = Food/MAX FOOD CAPACITY 
 
Let’s inspect function (21) Regeneration Time (Vegetation Density) as an example for working WITH 
LOOKUP: 
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After pressing the As Graph-button the graph of the piecewise defined function is presented: 
 

 
 
We would be able to enter the nodes directly into the grid. It is easy to recognize that there is a linear 
interpolation between the given points (nodes).  
 
We run the simulation and inspect the first results. 
 
How are the deer doing? 

How develops the available amount of food? 

How are the predators doing? (Thanks human interaction – they are doing obviously badly!) 
 

White-tailed-deer in Kaibab Forest
100,000

600 M
400

50,000
300 M

200

0
0
0

-5 1 7 13 19 25 31 37 43 49 55
Time (Years)

Deer
Food
Predators
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The second graph shows the stock of deer as function of the food amount. 
 

Deer stock as function of food amount
100,000

75,000

50,000

25,000

0
0 1.5e+008 3e+008 4.5e+008 6e+008

Food (Kcal/day) * Year
Deer

 
Starting point is at right bottom and the development ends on the left hand side. 

 
The result of the simulation matches with the real historical occurrence. The reduction of the vermin 
led to an explosion of the deer population which caused a disastrous overgrazing of the available food 
capacity. A huge number of deer died of hunger and finally the deer stock became stabilized on a level 
based on the much reduced amount of food. 
 
As I am – unfortunately enough – no Excel-expert, I don’t know how to realize the functional depend-
encies together with their connected linear interpolations in an easy way in a spreadsheet. 
 
It would be great if any reader of these lines could accomplish this chapter performing the simulation 
with Excel. I would be very grateful for respective information. 
 
I will come back to MS-Excel later. 
 
 
But we can be glad having some other tools available to try with! 
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The DERIVE-Model 
 
 
I accepted the challenge treating this system with DERIVE. 
 
There appears the same problem: how to realize the piecewise defined functions with the linear inter-
polations? 
 
As a DERIVIAN one has immediately the idea to connect the points given in a matrix using the  
CHI-function. 
 
First of all the given data are fixed. Then my first attempt follows finding a function which is equiva-
lent to the LOOKUP-function. 
 

 
The graphs are looking pretty nice. Compare the graph for the regeneration time with the respective 
VENSIM-graph (page 25)! On the first glance you will not recognize any difference. 
 

  
 
But don’t be happy too early! Inspecting the 
value tables (e.g. the numbers of the PREDA-

TORS) we recognize the deficiency of the  
CHI-function in the nodes where the function is 
undefined. Hence this implementation is of no 
need for us.  
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The next function fulfils our requirements. 
 

 
 

 
The graphs fit exactly (nodes and segments) and the 
value tables don’t show any exceptions.  

 
 

 
 

 
Before programming I always tried to work through the system(s) acting as a “human spreadsheet”. 
I’d like to recommend this way treating such systems in classroom. Then the interconnections become 
clear and programming and/or transfer to a “real” spreadsheet becomes very easy.  
 
Here I benefit from the results of the VENSIM simulation because I can use its tables as a reference for 
programs and/or any other treatments. 
 
I try demonstrating the manual procedure – supported by the DERIVE made lu-functions – step by 
step. 
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The table consists of 16 columns. 
 
In row 1 I start with Time = 0, FOOD = 4,7 ⋅ 108, DEER = 4000 and PREDAT = 265. The numbers in 
the last row indicate the order of calculation. 
 
I go on with the entries for Food Demand, proceed with Browsing Loss and close the line with In-
crease Deer. Then we enter in row 2 (Time = 0.25) the new amount of FOOD and the new DEER popu-
lation (13, 14) followed by 1 through 12. We can follow the formulae (equations) how they are listed 
in the document. 
 

Row nr Time FoodDem BrowsLoss VegDens RegTime FoodIncr FOOD 

1 0 8⋅106 8⋅106 0.979167 1.041666 9.6⋅106 4.7⋅108 (*) 

2 0.25 8.0025⋅106 8.0025⋅106 0.98 1.04 9.23077⋅106 4.704⋅108 

3 0.50      4.70707⋅108 

        

        
  
PREDAT DeerDens PreyRate Loss Deer Food Sup GrRateDe IncrDeer DEER 

265 0.0125 3 795 117500 0.2 800 4000 

264 0.0125039 3.00312 792.824 117563 0.2 800.25 4001.25 (*) 

       4003.11 

        

        
 
(*) Calculating the increases (for FOOD and DEER) one has to consider the time increment dx.  
So for DEER(Time = 0.25) = 4000 + (800 – 795) ⋅ 0.25 = 4001.25. 
 
The values in the columns for Regeneration Time (RegTime), Predators (PREDAT), PreyRate and 
Growth rate Deer (GrRateDe) were found using the lu-function (in analogy to WITH LOOKUP). 
  

                  
The table from above can be transferred one by one into a DERIVE-program. 
 
With DERIVE I collect all values in a table, too. For plotting the diagrams I have to select the respec-
tive columns. 
 
 
First of all is a short function needed for the grazing 
or Browsing Loss. 

 
The lu-function was introduced earlier. The full program is following. 
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kaibab(n, dx, i, tab, t, f_dem, brows_loss, veg_d, deer_d, predators,  
       reg_time, food_inc, prey_r, inc_deer, food_supply, loss_deer, 
       deer, food) ≔  
PROG( 
   i ≔ 1, 
   tab ≔ [["RNr", "Time", "FDem", "GrazL", "VegD", "RegTime", 
        "FoodIncr", "PreyR", "DeerLoss", "FSupply", "DeerIncr", "Food", 
        "Deer", "Predators"]],  
     t ≔ 0, [deer ≔ ini_deer, food ≔ ini_food], 
     LOOP( 
          IF(i > n, RETURN tab), 
          f_dem ≔ deer·daily_requ, 
          brows_loss ≔ graz_loss(f_dem, food), 
          veg_d ≔ food/max_food_cap, 
          deer_d ≔ deer/area, 
          predators ≔ lu(t, pred), 
          reg_time ≔ lu(veg_d, regtime), 
          food_inc ≔ (max_food_cap - food)/reg_time, 
          prey_r ≔ lu(deer_d, predr), 
          loss_deer ≔ prey_r·predators, 
          food_supply ≔ food/deer, 
          inc_deer ≔ lu(food_supply, gr_deer)·deer, 
          tab ≔ APPEND(tab, [[i, t, f_dem, brows_loss, veg_d, reg_time, 
                food_inc, prey_r, loss_deer, food_supply, inc_deer, food, 
                deer, predators]]), 
          deer ≔ deer + (inc_deer - loss_deer)·dx,  
          food ≔ food + (food_inc - brows_loss)·dx, 
          t :+ dx, i :+ 1)) 
 
The first 4 rows are – very enjoyable – completely corresponding with the manually calculated table 
and the VENSIM-results as well. 
 

 
These are the values for FOOD and DEER for the last three quarters of a year. 
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Please compare the DERIVE-diagrams with the plots generated with VENSIM (pages 25, 26) 
 
DELETE((kaibab(202, 0.25))↓↓[2, 13], 1) 

 

DELETE((kaibab(202, 0.25))↓↓[2, 12], 1) 

 

DELETE((kaibab(202, 0.25))↓↓[12, 13], 1) 

 

I promise to try modelling the system by using differential equations later. 

 
For treating this problem with a spreadsheet program it would be useful to approximate the WITH 
LOOKUP functions for PREDATORS, Prey rate, Regeneration Time and Growth rate Deer by an „or-
dinary“ function. 
 
This is a nice task for its own. Sliders and meaningful considerations lead to appropriate functions. 
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How good are these approximations? We can check this by replacing the lu-functions in program  
kaibab gaining program kaibab_f. Then we will compare the graphs of the deer population derived 
from both programs. 

 
The result is impressive, isn’t it? The graphs for the food are almost identical, too. 
 
These functions make modelling with spreadsheet much more comfortable. Now let’s try MS-Excel! 
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The MS-Excel-model 
 
We could take over the functions from DERIVE but there is a “SOLVER“ available in the spreadsheet 
program which is a very versatile tool. We need some “inspiration” from the form of the scatter dia-
grams in order to make the right decision for the type of function which we should choose for the ap-
proximation.  

 

“Inspired“ by DERIVE I choose for the predator function the form d x

a
b c e− ⋅+ ⋅

 and enter in cell C3 as 

follows: =$A$12/($B$12+$C$12*EXP(-$D$12*A3)). 

We enter initial values for the solving (= iteration-) procedure in cells A12 to D12 – and this is the 
trickier part of the task. However, here we can refer to earlier results again. I found approximating the 
growth rate of the deer the most difficult.  
 
In the SE-column are the squared errors of the 
model values with respect to the real values. Cell 
D10 contains the sum of the squared errors 
which should become (absolutely) minimized (= 
0). 
 

Now we see that the SOLVER delivers obvi-
ously better approximating functions than we 
had found earlier. It doesn’t need some calcula-
tion to get this insight, just compare the graphs 
with the graphs on page 32! 
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Using these functions and according to the strategy of 
page 30 one can fill in the Excel worksheet.  

It is no problem to take a time increment of 0.25 years. 
Calculation is very fast. 

The peak of the deer population is a little bit shifted but the message of the graph is quite the same as 
before.  

See here a part of the worksheet together with the respective diagram. 

  
Bossel poses an interesting question and task: 
 

What would have been an appropriate shooting strategy (for the predators) to 
achieve a stable deer population without causing the collapse of the grazing capac-
ity? 

For answering a question like this application of sliders seems to be best suitable. GeoGebra and  
TI-Nspire (and MS Excel, of course) provide this valuable tool. DERIVE does also but we explained 
earlier why we cannot use the sliders with DERIVE  in problems like this. 
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The GeoGebra Model 
We use again the DERIVE-made approximating functions. The first model is set up with the given 
predator function in order to check whether the results are the expected ones. 
 
The next screen shot is a copy of the GeoGebra-screen with the diagram of the deer population and the 
scaled food stock (FOOD/10000). 
 
As the GeoGebra-spreadsheet needs long calculation times I increased the time step up to 0.5 which 
does not cause essential changes of the results as the diagram is showing. 

 
 
Let’s try to find an answer for Bossel’s question. After some – exciting – attempts I decided to intro-
duce the following shooting strategy. 

I will have a radical shooting of a animals annually for the first m years followed by reduction to b 
beasts per year. The respective “predator function” is entered in cell H2 (with the corresponding time 
in cell A2). There is nothing else to change in the spreadsheet from above.  
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Calculation of the first complete table needs some time but then the diagram is reacting immediately 
on the change of the parameters by moving the sliders. 
 
Starting with shooting 55 animals in the first year we can then keep the predator population on a level 
of 210 in order to achieve constant food supply for the deer. The number of deer stays stable with a 
stock of about 7360.  
 

 
 
 
 
The phase diagram Food-Deer shows a sig-
nificant convergence, too. 
 
But this is not the only one possibility to ob-
tain a stable high deer population.  
 
It makes fun to experiment to reach a more or 
less stable deer population on a lower or  
higher level. 
 
 
You can also introduce a moderate constant 
shooting rate or any combination. Here we 
have only an “exogenous” regulation of the 
predators. But it would also be possible to 
consider “endogenous“ factors like natural 
dying rate etc and include this in the simula-
tion. 
 
Good Sport! 
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Working with TI-NspireCAS 
  
In the beginning I had some troubles with the spreadsheet application but by and by it worked pretty 
well finally. The diagram looks the same as the GeoGebra graph. Calculation of the table works much 
faster which makes smaller time increments possible. 

Transfer of the DERIVE-program into the TI-NspireCAS-language is an easy task. 

luf(x,pk) is the table function corresponding with the lu-function in DERIVE: 

 

Define luf(x,pk)= 

Func 

:Local f 

:f:=when(pk[1,1]≤x_<pk[2,1],((pk[2,2]-pk[1,2])/(pk[2,1]-pk[1,1]))*(x_-pk[1,1])+pk[1,2],0) 

:pk:=subMat(pk,2,1,dim(pk)[1],2) 

:While dim(pk)[1]>1 

:f:=f+when(pk[1,1]<x_≤pk[2,1],((pk[2,2]-pk[1,2])/(pk[2,1]-pk[1,1]))*(x_-pk[1,1])+pk[1,2],0) 

:pk:=subMat(pk,2,1,dim(pk)[1],2) 

:EndWhile 

:f|x_=x 

:EndFunc 
 
See the program which provides the respective lists which are the necessary base for the graphic  
representations. 

 

Define kaibab(n,dx)= 

Prgm 

:Local i,t,deer,food,f_dem,brows_loss,veg_d,deer 

:Local predators,reg_time,food_inc,prey_r 

:Local loss_deer,food_supply,inc_deer 

:i:=1: t:=0 

:deer:=ini_deer:food:=ini_food 

:ld:={deer}:lf:={food}:ltime:={t} 

:While i≤n 

:  f_dem:=deer*daily_requ 

:  brows_loss:=when(f_dem≥((food)/(feedper)),((food)/(feedper)),f_dem) 

:  veg_d:=((food)/(max_food_cap)) 

:  deer_d:=((deer)/(area))*1. 

:  predators:=luf(t,pred) 

:  reg_time:=luf(veg_d,regtime) 
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:  food_inc:=((max_food_cap-food)/(reg_time)) 

:  prey_r:=luf(deer_d,preyr) 

:  loss_deer:=prey_r*predators 

:   food_supply:=((food)/(deer)) 

:  inc_deer:=luf(food_supply,gr_deer)*deer 

:  deer:=deer+(inc_deer-loss_deer)*dx 

:  food:=food+(food_inc-brows_loss)*dx 

:  t:=t+dx 

:  ld:=augment(ld,{deer}) 

:  lf:=augment(lf,{food}) 

:  ltime:=augment(ltime,{t}) 

:  i:=i+1 

:EndWhile 

:Disp "Deer in ld, scaled Food in lfs, Time in ltime" 

:EndPrgm 
 
The Calculator-application contains the data and the program call. 

 

  
Lists ltime, ld and lfs are the base for the scatter diagrams in the Graphs & Geometry application. 
 
The next screenshot shows the already known development of the deer population together with a 
representation of the food available in a suitable scaling.  
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We have seen the phase diagram, too, produced with other tools. 
 

 
 
I promised to use the sliders with TI-Nspire. So, let us try! 

 
I change the definition of the shooting strategy a little bit. I will keep the shooting numbers constant 
for the first m years until the predator population reaches a certain given number a. This number shall 
be kept stable. I will stickto my “philosophy” and introduce sliders for m and a. See a part of the pro-
gram. 



 

40 

 
 

The predator function is given under predators:=. 
 

 
 
Working with sliders using the program has the disadvantage that after every change of the parameters 
(moving the sliders) the program must be run again. Then the diagram is adapted immediately. 
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It is much more comfortable to use the Spreadsheet application. The graphs are manipulated directly 
moving the sliders. The Spreadsheet is not presented here. 

You can see two – of many others – ways to reach Bossel’s goal with different stable deer populations. 
According to the graph below we should decrease the predator stock within the first 20 years linearly 
down to a number of 150 and then keep this number of predators for the future. 

 
 
 

I mentioned in an earlier note my intention to try an approach via the numerical solution of the  
respective system of differential equations. Voila, it works as you can see in the following. 
 
 
The ecological catastrophe as a system of differential equations 
  
The form of the differential equations can be derived directly from the VENSIM-equations: 
 

_ _ _ _ ( )

_ _

_ _ ( _ )
max_ _

dd f dd gr deer f preyr f pred f t
dt d area

df max food cap f
dt fregtime f graz loss dayly requ d

food cap

   = ⋅ − ⋅   
   

−
=

 
− ⋅ 
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I am using the Runge-Kutta-routine of DERIVE again. 

 
It would be possible to apply the LOOKUP-routines but RK cannot work through all 201 rows of the 
table in one step. 
 
Selection of the first and second column shows rise and fall of the deer population: 
 

 
 
The plot displays all deer-plots and allows comparison.. 
 
This model fascinated me indeed, because it offers so many opportunities for treatment. Description of 
the piecewise defined functions (WITH LOOKUP) by one single function requires some fantasy and 
knowledge about possible function types. There is no “right” answer and this can be stated about most 
of modelling problems. 
 
Comparing between applying a program (which must be written in advance) and spreadsheet is charm-
ing and exciting as well. 
 
Use of sliders offers an important additional quality and provokes again interpreting the results. 
 
Besides the mathematical point of view this model is demonstrating once more how an intervention in 
natural procedure (even if in best intention) can destroy the balance of environment and can result in 
unforeseen consequences. 
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4 Population Dynamics 
with variable birth and death rates 

 
We describe the development of a population 
(initial value = 1000) where births and deaths as 
well are changing linearly with time. Both rates 
decrease within a certain time interval constant 
from an initial to a final value. 
 
I start with the VENSIM – simulation diagram. 
 

Right: Elementary school in Hellville,
Nosy Be,Madagascar 

 
 

Population
Births Deaths

Birth rate Death rateNet Growth Rate

INI POPULATION

INI BIRTH RATE
FINAL BIRTH RATE INI DEATH RATE FINAL DEATH RATE

FIRST YEAR
BIRTHS

LAST YEAR
BIRTHS

FIRST YEAR
DEATHS

LAST YEAR
DEATHS

POPULATION DYNAMICS with
variable Birth- and Death rates

 
 
Here are more constants and fewer equations. But we meet something new, the RAMP-function. It 
describes the constant change of Birth- and Death rates. 
 
 
The document contains all parameters together with their assigned values and all equations which all 
have been entered in alphabetical order: 
 
(01) Birth rate = INI BIRTH RATE + RAMP((FINAL BIRTH RATE – INI BIRTH RATE)/ 
 (LAST YEAR BIRTHS – FIRST YEAR BIRTHS), FIRST YEAR BIRTHS ,  
 LAST YEAR BIRTHS ) 
  
(02) Births = Birth rate*Population 
  
(03) Death rate = INI DEATH RATE + RAMP((FINAL DEATH RATE – INI DEATH RATE)/ 
 (LAST YEAR DEATHS – FIRST YEAR DEATHS), FIRST YEAR DEATHS ,  
 LAST YEAR DEATHS ) 
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(04) Deaths = Death rate*Population 
  
(05) FINAL BIRTH RATE = 0.01 
  
(06) FINAL DEATH RATE = 0.012 
  
(07) FINAL TIME = 2100 
  
(08) FIRST YEAR BIRTHS = 2010 
  
(09) FIRST YEAR DEATHS = 2010 
  
(10) INI BIRTH RATE = 0.04 
  
(11) INI DEATH RATE = 0.015 
  
(12) INI POPULATION = 1000 
  
(13) INITIAL TIME  = 2000 
 The initial time for the simulation. 
  
(14) LAST YEAR BIRTHS = 2060 
  
(15) LAST YEAR DEATHS = 2030  
  
(16) Net Growth Rate = Birth rate –  Death rate 
  
(17) Population= INTEG (Births – Deaths, INI POPULATION) 
  
(18) SAVEPER = TIME STEP 
 The frequency with which output is stored. 
  
(19) TIME STEP = 0.25 
 The time step for the simulation. 
  
Graphs of the rates explain the name of the function RAMP: 

Birth, Death and Net Growth Rate
0.05

0.035

0.02

0.005

-0.01
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Time (Year)
Birth rate : popdyn
Death rate : popdyn
Net Growth Rate : popdyn

 
 
The next diagram shows how population develops. In our case birth rate decreases faster than the 
death rate. 



 

45 

Population Dynamics
125

2,500

62.5
1,250

0
0

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
Time (Years)

Births : popdyn
Deaths : popdyn
Population : popdyn

 
The results can be presented in form of a table, too. See here the last rows of the table. 

TIME STEP in System Zoo is 0.1. (My TIME STEP used is 0.25). The results do not really differ as you 
can see comparing the next two details of the respective tables. 

 
 

 
The number of the births and deaths in columns 2 and 3 must be interpreted as numbers per year – and 

not per time step. Hence net increase of population per quarter of a year is Births Deaths .
4
−  
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The DERIVE model with ITERATES 
 
The ITERATES function is an excellent tool of DERIVE for modelling recursive procedures. It is not 
very easy to handle for many students and other users but it is very efficient. 
Since DERIVE is programmable ITERATES can be replaced by a small program with a loop. 
 

 
 
The “RAMP-function“ which we met in VENSIM has been defined now and all rates can be presented: 

 

 
 
Let’s iterate 401 times using a time step of 0.25 years. This is sufficient to reach the 100 years  
between 2000 and 2100. Syntax of the ITERATES command is a DERIVE speciality. 
 
Output is given in form of a matrix containing the coordinates (time, population) of the points which 
can be plotted immediately. 
 
It turns out that reduction of time step to 0.1 does not result in a change of the graph. The graph on the 
next page shows both plots superimposed. One can hardly notify any difference. 
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Next table shows the three first and three last rows of the matrix for time step 0.25 using first the  
ITERATES-construct population and then the program pop from below. 

  
 
 
 
 
I don’t have any explanation for the – small – difference in the population size compared with the 
VENSIM values the end of the table appearing as result of the population-function. 

I mentioned above that the ITERATES-command can be replaced by an equivalent program: 
 
pop(n, dt, tab, i, p, t) ≔                                                               
  Prog                                                                                   
    p ≔ 1000                                                                             
    t ≔ 2000                                                                             
    tab ≔ [[t, p]]                                                                       
    i ≔ 1                                                                                
    Loop                                                                                 
      If i > n                                                                           
        RETURN tab                                                                      
        p ≔ p + p·(ramp(t,0.04,0.01,2010,2060) -  
                   ramp(t,0.015,0.012,2010,2030))·dt 
      t :+ dt                                                                            
      tab ≔ APPEND(tab, [[t, p]])                                                        
      i :+ 1 

The pop-generated values are matching exactly with the VENSIM values as you can verify above! 
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Finally it would make sense to treat the population development supported by a differential equation. 

It needs only “translating” the equations (01, 02, 03, 04, and 17) given in the VENSIM-document. 

( ), ( 2000) 1000dp p birth rate death rate p t
dt

= ⋅ − = =  

We use the self defined RAMP-function for birth rate and death rate and apply the Runge-Kutta  
numerical method again. 

 
 
                           
 
 
 
 

As you can see table and graph agree with the previously obtained results. 

A slight change in the DERIVE program presented above gives the opportunity to add the diagrams of 
births and deaths. 

 

 
 
Births and Deaths are multiplied by the scaling factor 80. 
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Population Dynamics with TI-NspireCAS 
 

 
The Lists & Spreadsheet application delivers lists for births, deaths and population. 
 

 
 
I multiplied Births and Deaths by 80 in order to represent all lists on the same axes which results in a 
well known diagram. 
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5 The Reservoir is flowing over! 
 
We simulate the dynamics of a Reservoir. Its 
RESERVOIR CAPACITY can be exceeded by a 
constant NORMAL INFLOW and additionally 
by an Inflow in form of a pulse (melting of 
snow, heavy rains, …). We assume that the 
normal Outflow is proportional to the current 
contents of the Reservoir with a NORMAL 

OUTFLOW RATE. In case of overloading the 
reservoir, the surplus results as Overflow 
with an OVERFLOW RATE, which is greater 
than the NORMAL OUTFLOW RATE.  

 

 
Kaprun storage reservoir, Salzburg, Austria 

The extra load in form of a pulse is described by the PULSE HEIGHT which starts at PULSE BEGIN with 
a duration PULSE LENGTH. 
 
It is no problem to set up the VENSIM stock and flow diagram. Later you will see how to describe the 
PULSE-function by a short function. Take it now as it is. 

Reservoir

Overloading a Reservoir

Inflow Outflow

Overflow

INI RESERVOIR

PULSE HEIGHT

PULSE BEGIN

PULSE LENGTH

NORMAL
INFLOW

RESERVOIR
CAPACITY

Total outflow

OVERFLOW
RATE

NORMAL
OUTFLOW RATE

 
 
The document comprises all data of the model (I changed the order): 
 
(03) INI RESERVOIR = 0.3 
  
(05) NORMAL INFLOW = 0.25 
  
(06) NORMAL OUTFLOW RATE = 0.5 
  
(09) OVERFLOW RATE = 10 
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(10) PULSE BEGIN = 5 
  
(11) PULSE HEIGHT = 10 
  
(12) PULSE LENGTH = 0.2 
  
(14) RESERVOIR CAPACITY = 1 
 
(02) Inflow = NORMAL INFLOW + PULSE HEIGHT * PULSE(PULSE BEGIN, 
  PULSE LENGTH) 
  
(07) Outflow = NORMAL OUTFLOW RATE * Reservoir 
  
(08) Overflow= IF THEN ELSE(Reservoir > RESERVOIR CAPACITY, 

 OVERFLOW RATE*(Reservoir – RESERVOIR CAPACITY), 0) 
  
(13) Reservoir = INTEG(+Inflow – Outflow – Overflow, INI RESERVOIR) 
  
(17) Total outflow = Outflow + Overflow 
 
(04) INITIAL TIME = 0 
 
(01) FINAL TIME  = 20 
 
(16) TIME STEP = 0.02 
  
(15) SAVEPER = TIME STEP 
  
We will inspect the diagram based on the proposed parameters: 

Overloading 
20

2

10
1

0
0

0 1 2 3 4 5 6 7 8 9 10
Time (days)

Total outflow : reservoir
Inflow : reservoir
Reservoir : reservoir

 
 

Scaling: 0 ≤ Reservoir ≤ 2 and 0 ≤ Inflow, Total outflow ≤ 20 
 
We can spread the exciting time span between days 4 and 6. 
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Overloading 
20
2

10
1

0
0

4.50 5 5.50 6 6.50
Time (days)

Total outflow : reservoir
Inflow : reservoir
Reservoir : reservoir

 

How to interpret this diagram? 
 
The Reservoir fills slowly and reaches the equilibrium value of 0.5 units after approximately 4.5 days. 
Then suddenly an additional inflow – the pulse – arrives which results quickly in an overflow. This 
overflow is lasting until the RESERVOIR CAPACITY has increased down to 1 unit. Then it needs about 
10 days to reach the normal state again. 
 
Of course, the system depends mainly on the RESERVOIR CAPACITY and the NORMAL OUTFLOW 

RATE. If both are sufficiently large then we will hardly face an overflow.  
 
We simulate the process increasing the capacity to 2.5 units. 

Overloading 
20
4

10
2

0
0

4.50 5 5.50 6 6.50
Time (days)

Total outflow : reservoir_1
Inflow : reservoir_1
Reservoir : reservoir_1
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Take care of the vertical scaling: now we have 0 ≤ Reservoir ≤ 4. The greater capacity removes the 
peak of sudden inflow. 
 
Modelling the behaviour of a reservoir we will investigate what is happening if soon after the first 
pulse a second one will follow – the thunderstorm with heavy rains returns. We just add another 
PULSE. 
 

Reservoir

Overloading a Reservoir
with 2 Pulses

Inflow Outflow

Overflow

INI RESERVOIR

PULSE LENGTH

PULSE BEGIN1

PULSE LENGTH1

NORMAL INFLOW

RESERVOIR CAPACITY

Total outflow

OVERFLOW
RATE

NORMAL
OUTFLOW RATE

PULSE BEGIN2

PULSE LENGTH2

 
PULSE HEIGHT shall remain the same for both pulses; the second pulse will start at 5.6 with a PULSE 

LENGTH of 0.4 days. The Inflow-equation changes.  
 
Inflow = NORMAL INFLOW + PULSE LENGTH * PULSE(PULSE BEGIN1, PULSE LENGTH1)  
   + PULSE LENGTH * PULSE(PULSE BEGIN2, PULSE LENGTH2) 

Overloading a Reservoir with 2 Pulses
20

2

10
1

0
0

4 4.50 5 5.50 6 6.50 7 7.50 8
Time(Days)

Total outflow : reservoir 2
Inflow : reservoir 2
Reservoir : reservoir 2
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Here are the most interesting rows of the table for better comparison with the next realisations of the 
model: 
 
Time (Day)  Total outflow  Inflow  Reservoir 
0   0.15   0.25  0.3  
0.02   0.151   0.25  0.3020  
0.04   0.1519   0.25  0.3039  
0.06   0.1529   0.25  0.3059  
0.08   0.1539   0.25  0.3078  
0.1   0.1549   0.25  0.3098  
 
The first pulse arrives in the reservoir: 
 
4.96   0.2417   0.25  0.4834  
4.98   0.2418   0.25  0.4836  
5   0.2418   10.25  0.4837  
5.02   0.3419   10.25  0.6839  
5.04   0.4410   10.25  0.8821  
5.06   1.322   10.25  1.078  
 
At time 5.6 the second pulse arrives and pours into the reservoir: 
 
5.5   0.4995   0.25  0.9991  
5.52   0.4970   0.25  0.9941  
5.54   0.4946   0.25  0.9892  
5.56   0.4921   0.25  0.9843  
5.58   0.4897   0.25  0.9795  
5.6   0.4873   10.25  0.9747  
5.62   2.284   10.25  1.169  
5.64   3.957   10.25  1.329  
5.66   5.278   10.25  1.455  
5.68   6.322   10.25  1.554  
5.7   7.147   10.25  1.633  
 
6.29999  0.5387   0.25  1.003  
6.31999  0.4989   0.25  0.9979  
6.33999  0.4964   0.25  0.9929  
6.35999  0.4940   0.25  0.9880  
6.37999  0.4915   0.25  0.9831  
6.39999  0.4891   0.25  0.9782  
 
19.9603  0.2502   0.25  0.5005  
19.9803  0.2502   0.25  0.5005  
20.0003  0.2502   0.25  0.5005  
 
Now we have retruned to normal conditions since some time. 
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How the Model can look like with MS-Excel 
 
For the first model we take the parameters from above (2 pulses). 
 
 

 
After 20 days it looks like the VENSIM model: 

20 0 0 0 0.25 0.2502 0.2502 0 0.5005 
 
Increasing the RESERVOIR CAPACITY up to 2.5 units the diagram changes: 
 

Overloading with 2 Pulses

0,0000

0,5000

1,0000

1,5000

2,0000

2,5000

3,0000

3,5000

4,0000

4 5 6 7 8

Time (Days)
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Reservoir
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The Pulses and DERIVE 

Having been successful modelling the problem twice it should be easy to transfer the “performance” 
of the reservoir to a DERIVE program. We predefine the PULSE-function. 

 

 
 

The simulation program is very short: 
 
reservoir(normout_r, normin, res, rescap, p1, stp1, lep1, p2, stp2, lep2,  
  ovfl_r, t_start, t_end, dt, tab, t, totalin, ovfl, totalout) ≔    
  Prog                                                                        
    tab ≔ []                                                                  
    t ≔ t_start                                                               
    Loop                                                                      
      If t > t_end                                                            
         RETURN tab                                                           
      totalin ≔ normin + pulse(p1, stp1, lep1, t) + pulse(p2, stp2, lep2, t)  
      ovfl ≔ IF(res > rescap, ovfl_r·(res - rescap), 0)                       
      totalout ≔ normout_r·res + ovfl                                         
      tab ≔ APPEND(tab, [[t, totalout, totalin, res]])                        
      res ≔ res + dt·(totalin - totalout)                                     
      t :+ dt 
 
I present some values of the table; please compare with the respective VENSIM and MS-Excel values: 
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This looks pretty satisfying. I leave the same y-scaling for all values. 

 
In order to get a better orientation I include the horizontal line y = 15. 

 
 

Again I am regretting that it is not able to introduce sliders for the various parameters. Using a little 
trick we can produce the same diagram as with VENSIM (different scalings). 
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Bossel poses the task to investigate the influence of RESERVOIR CAPACITY on avoiding peaks in the 
reservoir Outflow. A slider would be very helpful.  

We could realize this with GeoGebra but at the moment this system is not stable enough and calcula-
tion times are too long for handling this amount of data – up to a total „hang up“. We can achieve this 
with TI-Nspire with little effort. 

Modeling with sliders and TI-NspireCAS 

 
 

 
All calculations are performed in the spreadsheet. It is easy to represent the lists in the diagram.  
It would be no problem to introduce more sliders for other parameters, too. 
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6 Density dependent Growth: Michaelis-Menten-Kinetics 
 
 
A growth function which is similar to the logis-
tic growth is based on the Michaelis-Menten-
Kinetics. 
 
 
Leonor Michaelis, 1875 – 1949, German biochemist 
and Maud Leonora Menten, 1879 – 1960, Canadian 
medical scientist 
 

     
This function is especially suitable for describing saturation processes in chemistry and biochemistry. 
Reaction velocity v depends among others on the concentration of the respective stock and can be 
described by the equation 

max .Sv v
S c

=
+

 

S is the respective concentration of the substrate. c is the Michaelis-Menten-Constant or the Dissocia-
tion Constant or Half Saturation Constant. The latter name is derived by the fact that for S = c the out-
come is half of the saturation effect. 

Whereas in logistic growth the increase of stock is described by 1 Stockr Stock
Capacity

 
⋅ ⋅ − 

 
, in this 

case we have for the increase the formula: 1 Stockr Stock
Stock c

 ⋅ ⋅ − + 
 with r being the MAXIMUM 

GROWTH RATE. We introduce a HARVEST RATE h for considering the stock decrease. 
 

This leads to the differential equation for this special form of growth: ' 1 .SS r S h S
S c

 = ⋅ ⋅ − − ⋅ + 
 

The VENSIM-stock and flow diagram is not very complicated. 
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The model document follows (here in alphabetical order). Something is new: I entered the dimensions 
of the variables. Then I can induce VENSIM to perform a dimension analysis checking consistency of 
all quantities. Here the answer is: Units are O.K. I can also check the model as a whole and I receive 
as answer: Net Growth is not used in the model. This is ok, because Net Growth is only an intermedi-
ate value which can be used for plotting or reading off in the table. 
 
 
(01) FINAL TIME = 50 
 Units: Day 
 The final time for the simulation. 
 
(02) Growth = GROWTH RATE * Stock * (1 – Stock/(HALF SATURATION  CONSTANT +  
      Stock)) 
 Units: M/Day 
  
(03) MAXIMUM GROWTH RATE = 1 
 Units: 1/Day 
  
(04) HALF SATURATION CONSTANT = 1 
 Units: M 
  
(05) Harvest = HARVEST RATE * Stock 
 Units: M/Day 
  
(06) HARVEST RATE = 0.5 
 Units: 1/Day 
  
(07) INI STOCK = 0.02 
 Units: M 
  
(08) INITIAL TIME = 0 
 Units: Day 
 The initial time for the simulation. 
 
(09) Net Growth =  Growth – Harvest 
 Units: M/day 
  
(10) SAVEPER = TIME STEP  
 Units: Day [0,?] 
 The frequency with which output is stored. 
 
(11) Stock= INTEG (Growth – Harvest, INI STOCK) 
 Units: M 
  
(12) TIME STEP  = 0.02 
 Units: Day [0,?] 
 The time step for the simulation. 
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Michaelis-Menten-Growth
1 M
1 M/Day

0.5 M
0.5 M/Day

0 M
0 M/Day

0 5 10 15 20 25 30 35 40
Time(Days)

Stock : M
Growth : M/Day
Harvest : M/Day

 
 
Bossel discusses two special cases: 

(1) What will happen if there is no Harvest (? 

Michaelis-Menten-Growth
50 M

1 M/Day

25 M
0.5 M/Day

0 M
0 M/Day

0 5 10 15 20 25 30 35 40
Time(Days)

Stock : M
Growth : M/Day
Harvest : M/Day

 
 

No harvest (HARVEST RATE = 0) 
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(2) What will happen if the HARVEST RATE is (too) high? (e.g. r = 0.5, h= 0.9 and INI STOCK = 4) 
 
As the next diagram is showing very clearly – and not surprisingly – the stock is breaking down very 
fast. 

Michaelis-Menten-Growth
5 M
1 M/Day

2.5 M
0.5 M/Day

0 M
0 M/Day

0 2.5 5 7.5 10 12.5 15 17.5 20
Time(Days)

Stock : M
Growth : M/Day
Harvest : M/Day

 
Bossel suggests further investigations connected with this model: 
 
Investigate the behaviour of the system for 

(a) various GROWTH RATES r with constant HARVEST RATE h > 0, 

(b) various HARVEST RATES h with constant GROWTH RATE r,  

(c) various HALF SATURATION CONSTANTS c. 

 
 
Sliders would be ideal for all these investigations. But various Stock-curves on the same axes for a 
series of parameters are also very convincing. For this is the VECTOR-command of DERIVE an ex-
cellent tool. 
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Treating the model with DERIVE as a differential equation 
We are using the CAS to find the equilibrium 
value (= saturation value). 

( )* c r hS
h

⋅ −
=  

 
For the numerical solution of the DE and subsequently for the graphic representation of the integral 
curve(s) we use again the Runge-Kutta-method: 

 
The next graph shows the Stock with variable GROWTH RATES r with 0 ≤ r ≤ 1 (h = 0.5 and c = 1). The 
left graph gives details for the first years. 

 

   
Now I will vary the HARVEST RATE h between 0 and 1 (r = c = 1):  

One investigation is still missing: what is the influence of the constant c with 0 ≤ c ≤ 2 (r = 1 and  
h = 0.5) on the Stock amount? See the respective VECTOR-commands and the plots. 
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Just for fun I will grab one more tool of my tool box. I will try solving the differential equation ana-
lytically launching WIRIS[8]. 
 

 
c is the integration constant 

  

 
 
It seems to work, so I will repeat this experiment with DERIVE. My hope is that I then could be able 
to work with my precious sliders. 

 
This is not so bad, we have the general solution in implicit form. 
We substitute S(t = 0) = i (for initial value) in order to obtain immediately the value for the integration 
constant k. 
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The next to last expression is the solution (in implicit form) and the last expression is the equilibrium. 
 
Now I can introduce sliders for r, c, h and i and plot the solution curve together with the equlibrium 
line. 
 

 
 

We can do all investigations and the effort – which was not too great – was indeed worthwhile! 
 
This is really great. Then I came across some strange results. I tried to find an explicit solution: 

 
I received a result – but the graph of this function does not match with the integration curve from 
above. I went on and did some manual manipulations to obtain a nicer form of the implicit solution 
and solved again for y. There was again a pretty result – but the graph didn’t fit! 
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I substituted the parameter values given in the second model and solved again for y. There were two 
solutions and – interestingly enough – one of them was the right curve. I don’t have an explanation for 
so many contradictions. Do you have one? Then please let me know. 

 
 
Additional comment: Only the special combinations of r and h lead to an explicit form. 
 
 
 
One can find very fine descriptions of the Michaelis-Menten-Kinetics among others in:  

http://www.isitech.com/fileadmin/pb/pdf-Dateien/Michaelis_Menten_Kinetik.pdf (German) 

http://www.ncbi.nlm.nih.gov/books/NBK22430/ 

http://depts.washington.edu/wmatkins/kinetics/michaelis-menten.html 

http://www.cdnmedhall.org/dr-maud-menten 

 

It is very interesting that the German paper contains simulations performed with VENSIM.  

 
 
 
 
 
 
 
 
[8]   http://wiris.schule.at/de_en/index.html 
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7 A Brusselator? Never heard! 
 
Yeah, what is this, a Brusselator? As I never came across this term I did 
some Internet research. 
 
I found in [9] that this is a „simple simulation of a chemical reaction 
with oscillating dynamics“. This made me much wiser? 
 
You can find a very fine description in [10]. 

Finally I found out the orgin of the name Brusselator:  

 

 

 
 

The Brusselator is a theoretical model for a type of 
autocatalytic reaction. The Brusselator model was pro-
posed by Ilya Prigogine and his collaborators at the 
Free University of Brussels. It is a portmanteau of 
Brussels and oscillator. 
(Wikipedia) 

 
 
The Brusselator is described by a system of differential equations: 

2

2

( 1)x A B x x y
y B x x y
= − + ⋅ + ⋅

= ⋅ − ⋅
 

A and B are given constant concentrations and x and y are intermediate products. Their behaviour  
during the chemical reaction is investigated and simulated.  
 
I will do it here from the other direction and will start solving the DE-system numerically. 
 
The WIRIS-solution 

 

[9] http://mscerts.programming4.us/de/912086.aspx 
[10] http://www.bibliotecapleyades.net/archivos_pdf/brusselator.pdf 
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Behind the first – unopened – “library“ is hidden my program for the Runge-Kutta-method. 

In WIRIS is this algorithm – in contrary to DERIVE – not implemented. 

The second “library“ contains both first derivatives, the third one the parameter values which are used 
by Bossel as initial values. The contents of the libraries can be used globally in the whole WIRIS-
session – and not only in the single paragraphs which are kept together within one  (left) bracket [. 
 
I was able to calculate and plot 6000 points using a step width of 0.004. When asking for more points 
no plot is appearing. Later we will try whether DERIVE has more power? 
 
The first plot shows how y develops durting the first 24 time units (seconds). 

 

The next plot gives the phase diagram for the x- and y-values. 
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Treatment with DERIVE and then with TI-NspireCAS 

I am using my own Runge-Kutta-routine rk4 and let plot the t-y-diagram for various B-values. 
(My rk4 works faster than RK.) 

 
Expression #3 is high lighted and plotted (B = 1), then I define B = 2, plot #3 again, etc. I use a step 
width of 0.01. Bossel works with VENSIM taking a step width 0.002. 

 

 
In expression #8 I took step width 0.001, too in order to compare the accuracy. As one can clearly see 
the bold line (step width h = 0.001) is more or less identical with the h = 0.01 generated function 
graph. 
The VENSIM-diagrams (later in this chapter) look quite the same. 
 
We can see that the curve changes from a damped oscillation to very pronounced oscillations.  
For B = 4 we recognize that y = 4 constant. 
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Leaving all parameters the same then we plot the respective phase diagrams: 

 

 

For accentuating the point (1,4) – phase diagram for B = 4 – I plotted this point in white colour. 

Bossel produces with VENSIM a little bit complicated so called “state pictures“ (in German: „Zu-
standsbilder“ =  families of phase diagrams). The initial values for x and y are running through an in-
terval. 
 
We can do this with DERIVE using a nested VECTOR-command for (0.4 ≤ x, y ≤ 4). Of course, this 
needs some calculation time but the plots are really convincing. 
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The points are represented “not connected”. 

 
The equilibrium point is easy to find. The derivatives are set to zero and the resulting system must be 
solved for x and y: 

2

2

0 ( 1)
0

A B x x y
B x x y

= − + ⋅ + ⋅

= ⋅ − ⋅
 

Even without using a CAS the equilibrium point results as , .BA
A

 
 
 

 Following Bossel it can be shown 

easily that this point for B < A2 + 1 appears as a stable whirl, which can be seen very clearly in the 
state picture from above. The equlilibrium point (1, 1.5) is the black point in the center of the whirl. 
The next two pictures are zooming into the interior of the whirl with points connected in the right 
graph displaying the phase diagram curves. 

 

       
 

For B > A2 + 1 we have a limit cycle, which contains an unstable equilibrium point in its interior, 
which is the point (1, 2.5) for the choice A = 1 and B = 2.5. 
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Unstable Equilibrium point in (1,2.5) 

There is no denying that these pictures have some esthetic charm. 
Later we will see that they can be produced with VENSIM, too. However, this needs some efforts.  
 
Of course, we would benefit of the application of sliders because then it would be very comfortable to 
study the influence of the various parameters.  
 
Sliders with TI-NspireCAS: 
 

 
 
It does not need much effort to produce the table in the spreadsheet. Sliders for a, b, x0 and y0 in the 
Geometry application have been installed previously. 
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The first diagram shows how x and y develop within the first 50 seconds using the parameters chosen 
by Bossel in System Zoo. 
  

 
 
The scatter plots are reacting immediately on every change of the slider settings. 
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See the phase diagram for the “System Zoo-parameters“ followed by a diagram based on another an-
other choice of parameters. 
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Thanks a private communication with Philippe Fortin I was able to produce another form of represen-
tation. We used a program rk4syst (Runge-Kutta) and instead of changing the initial values by sliders 
we can drag the initial point in the plane and additionally plot the direction field of DE system. 

 
 

 
In another Geometry window we could see the time graphs. 
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But finally we will work with Vensim PLE, too. 
 
The model is very simple and so it is done quickly. (Production of the “state pictures“ is a little bit 
tricky!) 
 
 
The Brusselator with Vensim PLE 

B R U S S E L A T O R

X Y

A B

dXdt dYdt

X0 Y0

 
 
(01) A = 1 
 
(02) B = 3 
 
(03) dXdt = A – (B+1) ∗ X+X ∗ X ∗ Y 
 
(04) dYdt = B ∗ X – X ∗ X ∗ Y 
 
(05) FINAL TIME = 50 
 
(06) INITIAL TIME = 0 
 
(07) SAVEPER  = 0.1 
 
(08) TIME STEP = 0.05 
 
(09) X= INTEG(dXdt, X0) 
 
(10) X0 = 1 
 
(11) Y = INTEG(dYdt, Y0) 
 
(12) Y0 = 4 
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B = 3
6

4.5

3

1.5

0
-5 0 5 10 15 20 25 30 35 40 45 50

Time (Second)
B = 3

 

Bossel uses the Euler-method with an increment of 0.001 (diagram above). I increased the step width 
up to 0.05 and did not recognize any change in the graph. So my simplification in the TI-Nspire-
Version is now justified more or less. 
 
The next diagram shows the comparison for various values for B. 

Brusselator variable  B
8

5

2

-1
-5 0 5 10 15 20 25 30 35 40 45 50 55

Time (Second)
B = 1
B = 2
B = 3

B = 4
B = 4.1
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See on the right hand side the phase dia-
grams. 
 
Applying a trick (an additional module) 
Bossel makes possible a double loop for the 
x- and y-values for a grid of 10 by 10 initial 
conditions for x and y. 
 
I cannot explain this now but invite you 
studying System Zoo 1. 

 
8

6

4

2

0
0 1 2 3 4 5 6 7 8

X
B = 1
B = 2
B = 3

B = 4
B = 4.1

 
You should have seen a plot very similar to the following one (but in red) earlier! 

Brusselator
5

4

3

2

1

0
0 0.50 1 1.50 2 2.50 3

X
Y : 
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8 Bistable Oscillator 
 
Prior to treating the “bistable oscillator“, I will 
explain the linear oscillator very shortly because 
it is the base concept of the oscillator. 

The general form of the linear oscillator is de-
scribed by the system of differential equations 
 

x a x b y
y c x d y
= +
= +

 
 

A bistable oscillator can look like this 

A well kown case of this linear oscillator is the spring equation: 
x y
y k x
=
= − ⋅

 

For the non physics – like me: x is the excursion, y is the velocity and k is the spring constant. We can 
consider a damping parameter d. Then the respective system reads: 

x y
y k x d y
=
= − ⋅ − ⋅

 

Introducing additionally a non linear coupling we obtain e.g. 

3

x b y
y x x d y
= ⋅

= − − ⋅
 

with a coupling parameter b and a damping parameter d. And this is our bistable oscillator. Its name 
will explain itself later. 

I start with the VENSIM PLE model and a very simple designation of the variables. 

Bistable Oscillator

y x

y0 x0

d b

dy dx

 
 
The following graph shows the behaviour of the excursion X and veleocity Y for the first 10 seconds 
with an initial velocity Y0 = 50. 
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Bistable Oscillator
60
10

0
0

-60
-10

0 1 2 3 4 5 6 7 8 9 10
Time (Second)

y : 
x :  

 
The describing document is very short, of course: 

(01) b = 1 

(02) d = 1 

(03) dx = b*y 

(04) dy = x – x^3 – d*y 

(05) FINAL TIME = 20 

(06) INITIAL TIME = 0 

(07) SAVEPER = TIME STEP  

(08) TIME STEP  = 0.01 

(09) x = INTEG(dx,x0) 

(10) x0 = 0 

(11) y = INTEG(dy,y0) 

(12) y0 = 50 

We take a look on the phase diagram. What do you think about the end behaviour? 

bist. Osc. Phase Diagram
50

25

0

-25

-50
-10 -5 0 5 10

x
y :  
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Inspecting the table for this diagram our impression is increased that there is an equilibrium point at  
(x = 0, y = -1). 

 

 

Analytical search for a possible equlibrium point is not difficult. We solve the system for x and y. 

3

0
0

b y
x x d y

= ⋅

= − − ⋅
 

And we obtain three solutions: x1 = 0, x2 = 1 und x3 = -1. All y-coordinates are 0. 

The system oscillates dependent on the initial velocity to (+1,0) or (-1,0). This is easy to see by run-
ning the simulation for a sequence of y-values and collecting all phase diagrams in one plot. 

bist. Oscillator Phases
12

-10

-4 -3 -2 -1 0 1 2 3 4 5 6
x

y : bist12
y : bist10
y : bist08

y : bist06
y : bist04

 
 

Later I will show the global behaviour for -2.50 ≤ x ≤ 2.50 und -2.50 ≤ y ≤ 2.50 working with DERIVE 
and using its VECTOR-command. 

 

 

Speaking about DERIVE we will take a turn to this CAS and we will try reproducing this not too diffi-
cult simulation. 
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The Bistable Oscillator with DERIVE 

Five DERIVE-expressions lead to perfect graphs: 

 

 

The first expression defines a func-
tion for numerical solving the DE-
system. Expressions #2 and #3 give 
the time-graphs of X and Y (same 
colours as in the VENSIM-
treatment). 

 

The next two expressions produce 
the “state pictures“ presenting a 
family of phase diagrams.  

   

One can recognize very clear the three equilibrium points: stable whirls at (± 1,0) and at (0,0) an in-
stable saddle. Of course, one could experiment changing both parameters b and d. We will do this now 
working with sliders. 
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The GeoGebra-model 
 
I didn’t use GeoGebra for a while in this text. However, this dynamic system is so simple that it can 
be modelled with GeoGebra (and its spreadsheet) without facing any problems.  

I define sliders for b, d and Y0. 
 
Point INI is given by variable coordi-
nates (0, Y0). 
 
 
 
 
I produce the respective lists in the 
spreadsheet according to the formulae 
as you can see below. 

 
In order to obtain the table I fill the cells in the first two rows as follows:  
 
A1: 0  time 
D1: 0  x0 (remains constant 0) 
E1: Y0  Initial value for y (variable by a slider) 
F1: (D1,E1) first point of the phase diagram 
G1: (A1,D1) first point of the time-x-diagram 
H1: (A1,E1) first point of the time-y-diagram 
  
A2: A + dt 
B2: dt ∗ b ∗ E1    increase of x 
C2: dt ∗  (–d ∗ E1 + D1 – D1^3)  increase of y 
D2: D1 + B2    next value of x 
E2: E1 + C2    next value of y 
F2: (D2,E2) 
G2: (A2,D2) 
H2: (A2,E2) 
I2: Segment(F1,F2) 
 
This second row is copied at least down to row 201. 
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Next two diagrams give the states of x and y for different parameter values. The “bistability” can easi-
ly be observed. The right plot is consisting of the segments between the points only (column I). 

  
You can see below the time-diagrams for two different parameter settings. The t-x-diagram has its 
initial point in the origin. 

 

 

With MS-Excel and TI-Nspire one can work alike. Installing the sliders in Excel needs more efforts. 
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How the oscillator becomes chaotic: 
 
If the oscillator – its behaviour has been pretty predictable so far – will be excited from outside by 
another periodic oscillation it will react in varied ways which can finally end in chaos. 

The differential equations system is modified: 

3 cos
x b y
y x x d y q tω
= ⋅

= − − ⋅ + ⋅
 

The recent GeoGebra version cannot work properly for a larger number of rows in the spreadsheet  
(>200 rows). Accepting extended calculation times one can obtain nice diagrams. (Cell C2 must be 
modified according to the second DE including q and ω; additional sliders are to be introduced.) 

   
 

Sliders with TI-NSpireCAS 
 
The spreadsheet is structured like in GeoGebra. Step width is predefined as dt = 0.05. 

 
The time-diagrams for xand y for the first 50 time units. 



 

86 

The phase diagram looks quite interesting: 

 
The representation becomes really attractive when animating any – does not matter which one – slider. 
Then an exciting “movie” is running presenting fast changing diagrams. 

 
Static Diagrams with DERIVE 
 
In DERIVE we use again Runge-Kutta for solving the differential equation system – but we must do 
without sliders. At the other hand we benefit of taking a small step width dt = 0.01 with a reasonable 
calculation time (∼ 45 seconds) and receiving 10000 points which can be plotted. 

 

       
Phase diagrams for the parameter settings given above. 

(One can get an idea of the two equilibrium points, but they get lost after a short while.) 
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9 Stock-keeping – with random numbers 
 
Modelling with random events is not only especially attractive but also close to reality as many pa-
rameters are varying randomly within certain boundaries. 

Stock-keeping is an important cost factor for many companies. A clever balance between the clients’ 
requests – complying with orders – and keeping the stock as small as possible must be found.  

I set up the model according to Bossel (System Zoo 3): 

The respective Warehouse Stock results from time dependent quantities Sales and Deliveries (accord-
ing to received Orders). Orders are based on the Warehouse Stock and on the actual Sales. Three  
parameters must be considered: DAILY SALES ORDER FACTOR, STOCK DEFICIT ORDER FACTOR and 
WAREHOUSE STOCK GOAL. An important parameter for Deliveries is the DELIVERY DELAY. 

Varying Sales is defined by the Random Deviation of AVERAGE DAILY SALES. We use a random num-
ber (by applying a uniform distribution) for obtaining the Daily Random Number. Additionally given 
is the percentage of the sales event SALES PULSE PERC for a certain day of this event SALES DAY 

PULSE. Now we are able to investigate the dynamics in this system. 

All other quantities which are influencing the system can be read off from the stock and flow diagram. 
 

Stock- keeping and Orders

Warehouse
Stock DeliveriesSales

AVERAGE
DAILY SALES

Sales Pulse

Random
Deviation

MAX SALES
FLUCTUATION

WAREHOUSE
STOCK GOAL

INITIAL STOCK

DELIVERY
DELAY

DAILY SALES
ORDER FACTOR

STOCK DEFICIT
ORDER FACTOR

SALES PULSE
PERC

SALES DAY
PULSE

Orders

<Time>

<TIME STEP>

Daily Random
Numberfind new value remove old value

SALES
REMAINDER RATE

 

I show the document containing all settings and equations (including the dimensions). 
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Settings 

FINAL TIME = 500 
Units: Day 
The final time for the simulation. 
  
INITIAL TIME = 0 
Units: Day 
The initial time for the simulation. 
  
SAVEPER = TIME STEP 
Units: Day 
The frequency with which output is stored. 
 
  
TIME STEP = 0.0625 
Units: Day 
The time step for the simulation. 
 

Parameters 

AVERAGE DAILY SALES = 1000          Old warehouses in Amsterdam 
Units: Pieces/Day 
  
DAILY SALES ORDER FACTOR = 1 
Units: 1 [0,2,0.125] 
  
DELIVERY DELAY = 20 
Units: Day [0,?] 
  
INITIAL STOCK = 2000 
Units: Pieces [0,10000,1000] 
  
MAX SALES FLUCTUATION = 25 
Units: 1 [0,50,5] 
  
SALES DAY PULSE = 10 
Units: Day 
  
SALES PULSE PERC = 0 
Units: 1 [0,50,10]     
Percentage of the average daily sales 
 
SALES REMAINDER RATE = 1                       Market Scene in Marangu, Tanzania 
Units: 1/Day 
  
STOCK DEFICIT ORDER FACTOR = 0.125 
Units: 1/Day [0,1,0.125] 
  
WAREHOUSE STOCK GOAL = 2000 
Units: Pieces 
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Dynamics (= Equations) 

Daily Random Number = INTEG (+find new value – remove old value, 0) 
Units: 1 
  
Deliveries = DELAY FIXED(Orders, DELIVERY DELAY, AVERAGE DAILY SALES) 
Units: Pieces/Day 
  
find new value = IF THEN ELSE(ABS(Time – INTEGER(Time)) <= TIME STEP/2,  
 RANDOM UNIFORM(0, 1, 0)/TIME STEP, 0) 
Units: 1/Day 
  
Orders = IF THEN ELSE((DAILY SALES ORDER FACTOR*Sales + STOCK DEFICIT ORDER  
 FACTOR*(WAREHOUSE STOCK GOAL – Warehouse Stock)) > 0,  
 (DAILY SALES ORDER FACTOR*Sales + STOCK DEFICIT ORDER  
 FACTOR*(WAREHOUSE STOCK GOAL – Warehouse Stock)), 0) 
Units: Pieces/Day 
  
Random Deviation = AVERAGE DAILY SALES*(2*MAX SALES FLUCTUATION/100)* 
 (Daily Random Number-1/2) 
Units: Pieces/Day 
  
remove old value = IF THEN ELSE(ABS(Time + TIME STEP/2 – INTEGER(Time + 
 TIME STEP/2)) <= TIME STEP/2, Daily Random Number/TIME STEP, 0) 
Units: 1/Day 
  
Sales =  IF THEN ELSE(AVERAGE DAILY SALES + Random Deviation + Sales Pulse < 
 Warehouse Stock*SALES REMAINDER RATE, (AVERAGE DAILY SALES + 
 Random Deviation + Sales Pulse), (SALES REMAINDER RATE*Warehouse Stock)) 
Units: Pieces/Day 
  
Sales Pulse = (SALES PULSE PERC/100)*AVERAGE DAILY SALES* 
 PULSE(SALES DAY PULSE, 1) 
Units: Pieces/Day 
  
Warehouse Stock = INTEG(+Deliveries – Sales, INITIAL STOCK) 
Units: Pieces 
  
 

For our first simulation we set SALES PULSE PERC = 0 and observe the process which is now the result 
of random fluctuations only. 
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Please notice the command DELAY FIXED in Deliveries. At every delay in deliveries the value of the 
input must be stored for the present in order to hand it over later. (We will make use of the DELAY 
command in the last chapter.) 

Let us observe the process over a period of 500 days: 

Warehouse Stock and Orders
5,000 Pieces
2,000 Pieces/Day

3,750 Pieces
1,500 Pieces/Day

2,500 Pieces
1,000 Pieces/Day

1,250 Pieces
500 Pieces/Day

0 Pieces
0 Pieces/Day

0 50 100 150 200 250 300 350 400 450 500
Time (Day)

Warehouse Stock : Pieces
Sales : Pieces/Day  

We select any space of time and spread it for a more accurate inspection, e.g. the span between days 
100 and 150. 

Warehouse Stock and Orders
4,000 Pieces
2,000 Pieces/Day

2,000 Pieces
1,000 Pieces/Day

0 Pieces
0 Pieces/Day

50 70 90 110 130 150
Time (Day)

Warehouse Stock : Pieces
Sales : Pieces/Day
Orders : Pieces/Day
Deliveries : Pieces/Day

 

Bossel gives the interpretation in his book as follows:  
 

“As long as no Delivieries on earlier Orders are arriving the increasing difference from 
the WAREHOUSE STOCK GOAL together with ongoing Sales is resulting in more Orders 
which lead after the DELIVERY DELAY to Deliveries. Thanks them the Warehouse Stock 
is increasing and the Orders can be reduced. According to DELIVERY DELAY Deliveries 
will decrease after a while and the cycle starts again …“ 
(This was not so easy for me to translate and I hope that I did it not too bad!) 
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Function RANDOM UNIFORM(0,1,0) generates a uniform distrubuted (pseudo) random number in 
the interval (0,1) with 0 as initial value I.e. that we will receive the same random numbers at every 
simulation run as long as we don’t change the third parameter.  
I changed to RANDOM UNIFORM(0,1,1) in the equation of find new value to run another simulation 
and present again the period of 100 days. Can we confirm Bossel’s oberservation? 

Warehouse Stock and Orders
4,000 Pieces
2,000 Pieces/Day

2,000 Pieces
1,000 Pieces/Day

0 Pieces
0 Pieces/Day

50 70 90 110 130 150
Time (Day)

Warehouse Stock : Pieces
Sales : Pieces/Day
Orders : Pieces/Day
Deliveries : Pieces/Day

 
 

 
After simulation with random sales fluctua-
tions we will repeat the simulation consider-
ing one single Sales pulse which is then fol-
lowed by constant daily sales. 
 
 
Two parameters must be changed: 
 
MAX SALES FLUCTUATION = 0 

SALES PULSE PERC = 20 
 
The pulse can be seen as short vertical seg-
ment on the left border. 

Warehouse Stock and Orders
4,000 Pieces
2,000 Pieces/Day

2,000 Pieces
1,000 Pieces/Day

0 Pieces
0 Pieces/Day

0 100 200 300 400 500
Time (Day)

Warehouse Stock : Pieces
Sales : Pieces/Day
Orders : Pieces/Day
Deliveries : Pieces/Day

 
We can observe an undamped periodic os-
cillation of the stock with a period length of 
about 80 days. 
 
The phase diagram demonstrates this very 
clear. 

Warehouse Stock and Orders - Phase diagram
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The respective program with DERIVE 
 
Ich must admit that I had some problems understanding and reproducing the dynamics manually be-
fore realizing the process in form of a DERIVE program. However, finally it worked. I will omit this 
step here. It should be possible to read off the procedure from the program. 

I predefined the parameters and did not include them into the list of function arguments. I believe that 
this makes running the simulation more comfortable. Of course I wanted to compare my results with 
the VENSIM-data. DERIVE delivers other (pseudo-) random numbers. What to do? 

I transferred the listof the first 500 VENSIM generated random numbers into a data list for DERIVE. 
This was not difficult. I named this list as rdnrs. Here are the first five numbers of this list: 

 
I kept the designation of the variables as short as possible – but yet understandable – in order to obtain 
a well readable program code. 

The first lines serve for defining the parameters.  

   

This is the program. Please note the line between quotes! 

whouse(n, dt, i, t, rddev, sales, delivs, orders, stock, dayrd, tab) ≔  
 PROG( 
  "rdnrs := VECTOR(RANDOM(1), i, 500)", 
  n ≔ n/dt, 
  i ≔ 1, 
  [t ≔ 0, stock ≔ ini_st, delivs ≔ tvm], 
  rddev ≔ avgsales·2·maxsfl/100·(-0.5),  
  sales ≔ avgsales + rddev,  
  orders ≔ dailys_of·sales,  
  tab ≔ [[t, stock, sales, orders, delivs]],  
  LOOP( 
   IF(i > n, RETURN tab), 
   t ≔ t + dt,  
   dayrd ≔ rdnrs↓CEILING(t),  
   rddev ≔ avgsales·2·maxsfl/100·(dayrd - 0.5),  
   stock ≔ stock + dt·(delivs - sales),  
   sales ≔ IF(avgsales + rddev < stock·salesremrate,  
    avgsales + rddev, salesremrate·stock), 
   delivs ≔ IF(i < deldel/dt, avgsales, tab↓(i - deldel/dt + 1)↓4), 
   orders ≔ IF(dailys_of·sales + stdel_of·(stgoal - stock) > 0,  
    dailys_of·sales + stdel_of·(stgoal - stock), 0), 
   tab ≔ APPEND(tab, [[t, stock, sales, orders, delivs]]), 
   i :+ 1)) 

 

I plot the time-stock-diagram for time steps 0.0625 (System Zoo), 0.25 and 1 
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We can see that we receive the same 0.0625-diagram as given in Bossel’s book and further that it 
seems to be sufficient choosing a time step dt = 1. 

   

 
black: dt = 0,0625; blue: dt = 0,25 and red: dt = 1 

In my opinion time step 1 (day) make sense. Who will update every 30 minutes (= 1/16 of a n 8 hours’ 
labour day) update the sales numbers, the orders etc. Usually this happens at the and of a day or even 
of a week! 

My DERIVE-model does not consider the Sales Pulse. I realized the model with the random deviation 
from the average only. As mentioned above I used the (pseudo) random numbers generated by VEN-
SIM in order to have a reference available (to check the correctness of m< program). 

Let’s compare the first rows of the resulting tables. 

Here are the results of the first seven time steps performed with VENSIM: 
 

 
The DERIVE results are following: 
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Ok, the first rows maybe the same, but how will it look some days later? 

I take the section around day 20 which is the time for delivery of the first order. 

I start presenting the respective part of the DERIVE-table: 

 
Comparison with the VENSIM-results shows complete correspondence. 

 
This correspondence remains for the rest of the tables. 
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It is easy to zoom into any section of the 500 days period. 
 

 
 

As I can be sure that my model works correctly I will activate the random number generator of  
DERIVE. What I have to do is removing the quotes in the first program line. 

I run the simulation for dt = 1 three times and plot the stock graphs on the same axes. 
 

 
 

Following this procedure we could also perform the simulation using TI-Nspire, GeoGebra or  
MS Excel. This would offer the possibility to introduce sliders for all parameters for better studying 
their influence. 
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10 Rössler Attractor 
 
If you are interested in dynamic systems, fractals and chaotic behaviour then 
you will very soon read about „strange attractors“, like the famous Lorenz 
Attractor, the Hénon Attractor, the Ikeda Attractor and others – and the 
Rössler Attractor. 

The Rössler Attractor (Otto E. Rössler, German biochemist, born 1940 in 
Berlin) is described by a system of differential equations. 

( )

x y z
y x a y
z b z x c

= − −
= +
= + −

 

 

Y X Z
Increase Y Increase X

a b c

X0Y0 Z0

Roessler Attractor

Increase Z

 
As there are only a few variables necessary, the parameters and equations for the stock variables are 
quickly fixed. 

Parameters for the first simulation 

a = 0.55 

b = 2 

c = 4 

X0 = 1 

Y0 = 0 

Z0 = 0 

Dynamics 

Increase X = –Y – Z 

Increase Y = +X + a*Y 

Increase Z = b + Z*(X – c) 

X = INTEG(Increase X, X0) 

Y = INTEG(Increase Y, Y0) 

Z = INTEG(Increase Z, Z0) 

 

Time parameters for the first simulation 

INITIAL TIME  = 0 

FINAL TIME  = 100 

TIME STEP  = 0.01 

SAVEPER  = 0.05 



 

97 

We visualize the oscillations for X, Y and Z for the first 100 time units. I separated the graphs using 
different scalings for getting a better diagram. 

Roessler Attractor
48 1
12 1
30 1

18 1
-18 1

0 1

-12 1
-48 1
-30 1

0 10 20 30 40 50 60 70 80 90 100
Time (Unit)

Z : 1
Y : 1
X : 1  

These diagrams can also be displayed with SyntheSim for observing the influence of the parameters. 
Unfortunately this is not possible for the phase diagrams. It is a pity that we cannot admire the beauty 
of the attractor in its full 3D-appearance with VENSIM. We must be content with projections of the 
object into the coordinate planes (front view, side view and top view). 
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Some parameter combinations lead to limit situations with doubling periods occuring. We will show 
this on the next page and then again in the frame of the TI-Nspire-modelling.. 

Again I must regret that despite the many features of VENSIM – which we cannot fully exploit at all – 
there is no way to produce a 3D-presentation and there are no more extended sliders. 

DERIVE offers both features. So I will turn to this CAS. But here is also some reason for regret. The 
spatial presentation needs a huge number of points calculated by the Runge-Kutta-method and we 
cannot introduce sliders because of reasons which we mentioned earlier. 

 

DERIVE and the Roessler Attractor 
 

The projections into one of the coordinate planes need only one command line. Within a few seconds 
we can admire the result of the calculation in form of 10 000 points.  

(RK([–y – z,x + 0.55·y,2 + z·(x – 4)],[t,x,y,z],[0,1,0,0], 0.01, 10000))↓↓[2,4] 

(RK([–y – z,x + 0.55·y,2 + z·(x – 4)],[t,x,y,z],[0,1,0,0], 0.01, 10000))↓↓[3, 4] 

(RK([–y – z,x + 0.55·y,2 + z·(x – 4)],[t,x,y,z],[0,1,0,0], 0.01, 10000))↓↓[2, 3] 

 

     
XZ-Projection     YZ-Projection 

 

 
XY-Projection 
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Taking the parameters as follows we have limit cycles for c = 2, 3 and 4, which let us recognize the 
period doubling. 

VECTOR((RK([–y – z, x + 0.2·y, 0.2 + z·(x – c)], [t, x, y, z], [0, 1, 0, 0],  
 0.01, 10000))↓↓[2, 3], c, 2, 4) 

 

 

DERIVE enables displaying this beautiful attractor in three dimensions. 4000 points are sufficient for 
producing a fine graph. 

(RK([-y - z,x + 0.55·y,2 + z·(x - 4)],[t,x,y,z],[0,1,0,0], 0.05, 4000))↓↓[2,3,4] 
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Rössler Attractor with Sliders and TI-Nspire 
 
I find it boring entering the command line again and again when changing one or the other parameter 
and then waiting some seconds for inspecting the resulting graph. I’d like to observe the influence of 
the parameters continuously. That is: we need sliders. TI-Nspire (and GeoGebra and MS-Excel as 
well) offer them. 

I start with TI-NspireCAS. As I did in earlier models I do not use a program but I rely upon the spread-
sheet. I will apply the Euler-method in my first attempt. In order to obtain a reasonable result I must 
keep the step width very small which provokes a large number of steps, i.e. a (possibly too) large num-
ber of rows in the spreadsheet for TI-Nspire. Runge-Kutta can be done, but this procedure is very 
costly. I choose the middle course and will work applying the “Improved Euler method” for solving 
systems of differential equations. 

I install sliders for the parameters a, b and c, for the initial values x0, y0, z0, and for the step width dt. 
The right sides of the system are defined as independent functions. 

 
 

Now I am ready to insert the spreadsheet application. 

The situation is given by the following positions of the sliders: x0 = -0.1, y0 = 2, z0 = 0, a = b = 0.2,  
c = 2, dt = 0.1 

 
 
The first row is filled in according to the improved Euler method as follows: 
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The contents of the first row cells from A1 to J1 are: 

A1: 0   B1: = x0  C1: = y0 D1: = z0 

E1: = f(b1,c1,d1) F1:= g(b1,c1,d1) G1: = h(b1,c1,d1) 

H1: = f(b1 + dt e1, c1 + dt f1, d1 + dt g1) I1: = g(b1 + dt e1, c1 + dt f1, d1 + dt g1) 

J1: = h(b1 + dt e1, c1 + dt f1, d1 + dt g1) 

The second row is following: 

A2: = a1 + dt  B2: = dt/2 (e1 + h1)  C2, D2 are copies of B2 

F2 : J2 are copies of F1 : J1. 

 

This second row is to copied down in order to produce more points. It is recommended to perform this 
process in more steps to not overstress the system, at first until row 201, then proceed to row 401 and 
finally until row 601. This gives 600 points which is sufficient for fine graphs. Columns A to D are 
denominated and the columns (= lists) are used to plot the scatter diagrams which can be formatted as 
you like – and what is most important, they react immediately on the sliders. 

 

The first screen shot shows all time-diagrams together with one projection (YZ-projection). 

 

 

Small movements with the sliders let us receive the representation of the limit cycles. 
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XY-Projection – Limit Cycles 

Take c = 5.2 – and the limit cycles tend to be-
come chaotic (right screen shot). 

 
 

This works really excellent and can be reproduced in classroom – at least in my opinion. 

I still have the hope to produce a three dimensional representation of the attractor together with sliders. 
We expect a 3D-GeoGebra in the near future (and possibly there will follow a 3D-Nspire, too), then 
we will be able, but now?? There is indeed another way, come and look! 

 

 

The Rössler Attractor in three Dimensions with Sliders 
 
The spreadsheet programs implemented in Nspire and GeoGebra are quite nice but for really many 
data I like to turn back to good old MS-Excel. (I don’t forget that Nspire has and GeoGebra will have 
in the near future CAS features available in the spreadsheet, too!) 

I introduce for all parameters – except for dt – 
sliders (which are called in the German version 
“Schieberegler” = “slide controller”).  
 
Entering the formulae is some work, but it is not 
too much to do. 
 
2000 iterations and more can be performed with-
out any problems. So we can have a step width of 
0.05 to reach t = 100.  
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It is really fascinating to observe how the three projections are reacting simultaneously on every 
change of the parameters. 

This is not new, but what about a three dimensional picture? We could produce a parallel projection or 
even a central projection of the 3D-object into the 2D-plane. 

Top-, front- and side view could be seen earlier. I will refer to a presentation which we all know from 
our time as student: the oblique view. This representation form is determined by a dilatation in x- or y-
direction and the angle which is formed by this dilatated axis and and the horizontal line. I fix the dila-
tation with 0.75 and make the angle variable using another slider, of course. 

The transformation equations which give the coordinates x’ and y’ of the mapping resulting of the 
space coordinates of a point (x, y, z) are: 

0,75 cos
0,75 sin

x x y
y x z

α

α

′ = − +

′ = − +
 

These formulae are the entries for the next two columns and copied down. The two columns are used 
to create the diagram which represents the oblique view of the attractor (bottom left). 

 

 

 

The next page shows another configuration of the parameters. The diagrams are based on a step width 
dt = 0.05. 
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Here is another screen shot presenting limit cycles which are addressed on pages 98 and 99. 

 

 
 

One can proceed in the same way with TI-Nspire and it works. The reactions are not as smooth as with 
Excel. 
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11 Gumowski-Mira – and another “attractive“ Attractor 
My intention was to stop with chapter 10. But then I became ambitious enough to add something 
which cannot be found in the System Zoo.  

The world of the „strange attractors“ is a won-
derworld of forms and ideas behind the forms. 
In one of my Chaos-books I found a note on 
the Gumowski-Mira-Attractor. This attractor 
was discovered by two physicists, I. Gumowski 
and C. Mira in the frame of their work at 
CERN in Geneva in 1980. 

 

The original model is described by 

1

1 1

( )

( )
n n n

n n n

x b y f x

y x f x
+

+ +

= ⋅ +

= − +
 with 

2

2

2 (1 )
( )

1
a x

f x a x
x

−
= ⋅ +

+
;  a, b are constants. 

Exploring Gumowski-Mira with a Computer Algebra System 
 
I was interested in this fascinating and manifold class of attractors prior to my knowledge of VENSIM. 
My tools were DERIVE and WIRIS.  

The DERIVE-Code is easy to follow. Some 
1000 points can be generated and plotted in 
a short time. 

The task is to find “attractive” values for 
the parameters a and b. 

Searching in the Internet I came across 
great websites containing rich selections of 
exciting graphs. [11, 12, 13,14] 

 

Of course, real fun makes own experiment-
ing, researching and discovering. 

   
            gum0(1, 1, 0.245, 1, 20000)     gum0(1, 1, -0.245, 1, 20000) 
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gum0(1, 1, 0.01, 0.978, 20000)  gum0(1, 1, -0.48, 0.9924, 20000) 

 
 

This is an “own“ creation:: 

 

Comment: I am missing my beloved sliders! 

 
gum0(1, 1, -0.27, 0.995, 30000) 

 

Please compare the WIRIS-program with the  
DERIVE-program. 

There are only slight changes in the syntax. The plot 
of 10 000 (!) points is convincing.  
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Little change – Big effect: Change of sign creates 
a very different plot. 

 

 

 

 

Hunting for “beautiful“ attractors supported by sliders 
 
When working with TI-NspireCAS we cannot calculate (and plot) thousands of points but in most 
cases we will get an impression plotting the first hundreds of points whether there could an „attrac-
tive“ attractor be hidden or not.  

 

This is reason enough for me to use this tool as a 
vehicle for my search. The procedure is very 
similar to that one which I used investigating the 
Roessler attractor. 

 

 

Only two columns are needed. In this case the time-diagrams are without any value for us. 

         
The sliders installed for a, b, x0 and y0 allow free experimenting. Additionally we can vary the defini-
tion of function f at any time. 
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It does not need much time to discover a promising scatter plot: 

 
I switch to DERIVE or WIRIS and would like to observe the result of calculating and plotting not less 
than 20 000 points. 

 
gum0(1, 1, -0.71, 1, 20000) 

 

Taking a = 0.71 instead of a = –0.71 and plotting 
the first hundreds of points I receive just another 
– but even interesting – picture. 

This makes me curious again and I insist seeing 
the attractor in its whole beauty.  

The next page will unveal the secret. 
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gum0(1, 1, 0.71, 1, 20000) 

 

Can we do this with VENSIM, too? 

Unfortunately I mus admit that I – as a VENSIM-novice – was unable to set up an appropriate model.  
I had problems addressing xn and xn+1 as well in the definition for yn+1. I sent a request to VENSIM via 
http://www.vensim.com. I was very much surprised recieving an answer after some minutes. 
The answer was not very helpful for the moment. It read as follows: 

I don't see why you cannot do it. To get the old values of x and y use DELAY FIXED with a delay time 
of one time step. 

I had to admit my inability and I received an invitation: 

Can I ask you to post the question on our forum so that others can benefit from the answers as well? 

I followed this invitation and – the next surprise – there arrived an answer after a short while together 
with the respective VENSIM-file. As I noticed later my request started an interesting discussion in the 
VENSIM-Forum[15]. 

See first the VENSIM-model of the Gumowski-Mira attractor: 

X(n)X(n+1)

Y(n)Y(n+1)

<TIME STEP>

X0

Y0

b

a

Gumowski-Mira Attractor, Tom Fiddaman, 2011

See http://petervandernoord.nl/blog/2010/11/the-strange-beauty-of-the-gumowski-mira-attractor/

models.metasd.com

<FINAL TIME>
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The VENSIM - document offers full details: 

(02) a = 0.6 

(03) b = 0.995 

(04) FINAL TIME  = 2000 

(05) INITIAL TIME  = 0 

(06) SAVEPER  = TIME STEP 

(07) TIME STEP  = 1 

(08) "X(n)" = DELAY FIXED ("X(n+1)",TIME STEP,X0) 

(09) "X(n+1)" = b*"Y(n)"+a*"X(n)"+2*(1-a)*"X(n)"^2/(1+"X(n)"^2) 

(10) X0 = 2.25 

(11) "Y(n)"= DELAY FIXED ("Y(n+1)",TIME STEP,Y0) 

(12) "Y(n+1)"= -"X(n)"+a*"X(n+1)"+2*(1-a)*"X(n+1)"^2/(1+"X(n+1)"^2) 

(13) Y0 = 7.75 

 

Here we find the DELAY FIXED-command which makes possible the one step delay. When using the 
parameters from above we are presented a “Seven Cluster of Stars”. 

 

Tom Fiddaman added a short comment:  

The behavior is really amazing. 

 

 

 

See below the “Clusters” consisting of 20 000 
“stars” generated with DERIVE. 
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This was not the end of the discussion. Another member of the VESNIM-Forum sent a contribution: 
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Hi Tom, 

I do not see any reason for using a DELAY FIXED here. You can handle discrete systems - e.g. differ-
ence equations' systems - using the regular System Dynamics notation. What you need to do is: 

1. Set the time step to 1. 

2. Convert the Stock Equations into difference equations, e.g. Delta X = X(t+1) – X(t) = dx/dt  
with dt = 1. 

3. In the case of the Gumowski-Mira-System a bit of algebra will convince you that no delays are 
needed. 

See the model enclosed. 

Cheers, Guido 

X

Y

dx/dt

dy/dt

<a>

<b>

X(t+1)

<X>

<X0>

<Y0>

Gumowski Mira Attraktor without DELAY FIXED - by GWR

 
(01) a = 0.6 

(02) b = 0.995 

(03) "dx/dt" = (b*Y+a*X+2*(1-a)*X^2/(1+X^2))-X 

(04) "dy/dt" = (-X+a*"X(t+1)"+2*(1-a)*"X(t+1)"^2/(1+"X(t+1)"^2))-Y 

(05) FINAL TIME  = 2000 

(06) INITIAL TIME  = 0 

(07) SAVEPER  = TIME STEP  

(08) TIME STEP  = 1 

(09) X = INTEG ("dx/dt",X0) 

(12) "X(t+1)" = "dx/dt"+X 

(13) X0 = 2.25 

(14) Y = INTEG ("dy/dt",Y0) 

(17) Y0 = 7.75 
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It is interesting that both graphs do not correspond exactly. Comparing the values for X we observe a 
correspondence until X34. Then the values become different from another. It seems to be that two dif-
ferent algorithms are used in the background. What is Tom’s opinion? 

 

Guido, 

You're entirely correct. The INTEG notation that you used is probably the nicest way to do this for 
formal correspondence with discrete derivative notation. However, as long as TIME STEP=1 and 
Euler or Diff integration is used, the results will be identical whether INTEG, SMOOTH, or DELAY 
FIXED is used. (Diff integration is the same as Euler, but the rates and levels are stored differently, 
which makes it easier to see the initial values of the rates - sometimes useful for discrete systems like 
this.) 

Tom 

 
For function f(x) many forms can be chosen – including trig- and exp-functions. Marvellous plots are 
our reward.[16] 

 

             

This is the end of my excursion in the world of the dynamic systems. There is a huge number of inte-
resting Internet resources. Some links are given below. 

 

[11] http://www.maplesoft.com/applications/view.aspx?SID=87666 

[12] http://elif-erdine.com/?p=283 

[13] http://petervandernoord.nl/blog/2010/11/the-strange-beauty-of-the-gumowski-mira-attractor/ 

[14] http://www.generativeart.com/on/cic/papersGA2007/19.pdf 

[15] http://www.ventanasystems.co.uk/forum/index.php 

[16] http://math.cmaisonneuve.qc.ca/alevesque/chaos_fract/Attracteurs/Mira_exemples.pdf 

[17] http://models.metasd.com 

[18] http://demonstrations.wolfram.com/StrangeAttractorOfGumowskiMira/ 


