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Introduction

I have been interested in fractals, “Chaos* and Dynamic Systems since many years. Treating these
issues became possible for everybody with availability of computers and the respective software. Spe-
cial programs like FractInt have been on the market since long. But now supported by spreadsheets,
computer algebra and own programming it makes much more sense and fun as well to investigate
these phenomena.

By a book review a came across Hartmut Bossel’s “System Zoo” book series. These books are a real
repository and treasure box for applied mathematics. There was also information about the program
VENSIM. This is a commercial simulation software free of charge for teaching purposes.

Then I purchased the System Zoo-CD and was very enthusiastic about the many possibilities using
VENSIM. My ambition came up to treat a not too complex problem (Tourism and Environment) with
other tools which are available in our schools. I wanted to learn about the special features, their advan-
tages and disadvantages working through this example.

I had in mind MS-Excel, DERIVE, WIRIS, TI-NspireCAS and GeoGebra. All these programs offer
sliders which promised making the simulations much more dynamic varying the parameters. An addi-
tional challenge was to transfer the model into a differential equation or a system of differential equa-
tions and then solving it numerically or — if possible — analytically.

I was so much fascinated by this first example that I could not resist proceeding and trying other ones.
So it could happen that the paper comprises more than 100 pages finally.

My results are aesthetically appealing - at least in my opinion - and they may wake up appetite for
further experimenting and discovering. The “beautiful” and “strange” attractors might make the sys-
tems of differential equations interesting even for students who are not so enthusiastic with mathemat-
ics.

Unfortunately I could not address here essential interpretation of the generated tables and diagrams.
I refer to Bossel’s books and many other resources.

All files which are presented in this paper are available on request. Please send an email.
I wish much fun and would be very delighted receiving reactions.

Josef Bohm
nojo.boehm@pgv.at




1 Tourism and Environment

An easy simulation — using various tools

Among the many complex systems which can be found in Chapter 4 Ecological Systems and Re-
sources in Hartmut Bossel’s System Zoo 2!"" one can find as example Z411 Tourism and Environ-
ment.

All System Zoo examples are treated with the excellent simulation software VENSIM PLE™, which is
free for educational purposes.

After description of the model I will present performing its simulation first with VENSIM PLE. 1t will
be followed by a “reproduction® with MS-Excel and the VENSIM-results serving as reference.

The model can be described by a system of differential equations. Its numerical solution will be
achieved applying the Runge-Kutta-method which is implemented in DERIVE. We then can compare
the results with the results of the discrete model.

Whereas we cannot use sliders in DERIVE which could enable studying the influence of various pa-
rameters on the behaviour of the model, this is possible with GeoGebra®! and with TI-Nspire! as
well.

Finally we will find the state of equilibrium for important stocks.

Description

It is quite sure that there exists a dynamic
linkage between Tourism (e.g. as measured by
the number of overnight stays) and the
Environment Quality.

(1)  The Growth of environment quality is
defined by the ENVIRONMENT REGENER-
ATION RATE and is limited by a logistic
growth function according to its
ENVIRONMENT CARRYING CAPACITY.
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Ski resort in the Sierra Nevada, Spain

(2)  Occurrence of an Environmental Stress by Tourism results in a Loss of Environment Quality
proportional to an ENVIRONMENT DESTRUCTION RATE.

(3) The Environmental Stress depends on Tourism and on Environment Quality and is proportional
to both stocks.

(4) Growth of Tourism depends directly on Environment Quality and can be reinforced by ADVER-
TISING.

(5) Decrease of Tourism is described by a certain TOURISM DECREASE RATE.



The VENSIM-Model

One can load the ready made model™"). But it is much more fruitful to work through this model ac-
companied by the VENSIM-Tutorial'® and -Manual.

We start sketching the Stock and Flow diagram (simulation diagram):

Tourism and Environment

ENVIRONMENT
REGENERATION TOURISM
RATE ADVERTISING DECREASE RATE
INITIAL VALUE
ENVIRONMENT QUALITY 'N'Pc')“bgllg‘,'\'ﬂu'z
Envi ron_men Tourism
Quality  |pecreaseE

Gr8wthE GrowthT

ENVIRONMENTAL .
CARRYING CAPACITY _ENVIRONMENT Environmental

DESTRUCTION RATE Stress

The variable parameters are written in upper case and the stocks in ordinary characters. The boxes
contain the interesting stocks.

Relationships between the quantities are entered as equations. The summary of all equations is given
in a VENSIM-document. (In the original document the equations are given in alphabetical order, here
they are ordered according to the type of the quantities.) I will come back to the “Units” in a later
chapter.

(17)  Tourism = INTEG (GrowthT — DecreaseT, INITIAL VALUE TOURISM)
Units: Tourists

(11)  GrowthT = ADVERTISING*Environment Quality
Units: Tourists/Year

(03)  DecreaseT = TOURISM DECREASE RATE*Tourism
Units: Tourists/Year

(05)  Environment Quality = INTEG (GrowthE — DecreaseE, INITIAL VALUE ENVIRONMENT
QUALITY)
Units: Quality
(10)  GrowthE = ENVIRONMENT REGENERATION RATE*Environment Quality*
(1 — Environment Quality/ENVIRONMENTAL CARRYING CAPACITY)
Units: Quality/Year

(02)  DecreaseE = Environmental Stress*ENVIRONMENT DESTRUCTION RATE
Units: Quality/Year

(08)  Environmental Stress = Tourism*Environment Quality
Units: Quality*Tourists



The parameter values and the initial values for Environment Quality and Tourism are fixed. They can
be found in the document and also be printed:

(14) INITIAL VALUE TOURISM = 0.1
Units: Tourists

(13)  INITIAL VALUE ENVIRONMENT QUALITY =1
Units: Quality

(09) FINAL TIME =20
Units: Year
The final time for the simulation.

(04) INITIAL TIME =0
Units: Year
The initial time for the simulation.

(15) SAVEPER = TIME STEP
Units: Year [0,7]
The frequency with which output is stored.

(16) TIME STEP = 0.02
Units: Year [0,?]

(07) ENVIRONMENTAL CARRYING CAPACITY =1
Units: Quality

(06) ENVIRONMENT REGENERATION RATE =1
Units: 1/Year

(04) ENVIRONMENT DESTRUCTION RATE =1
Units: 1/(Tourists * Year)

(18) TOURISM DECREASE RATE =1
Units: 1/Year

(16) ADVERTISING =5
Units: Tourists/(Quality * Year)

Now we can run the first simulation. Then we will inspect the results in form of tables and diagrams as

well.
»] Vensim:Tourism.mdl Var: Environment Quality |
File Edit Model Options ‘Windows Help File  Edit Model Options  Windows  Help
PEE & ymr (B | AcEH & sBRE  FHum
A RLETRl] Tabie Time Down Tl lel EURL] Table Time Down ______I=lEd
oc@ [ Time (Year) "Environment Environment Qua ®| of [ Time (Tear) "Tourism"  Toursm
@ |0 Quality' 1 @ | 198403 Funs  0.833314
0.0z Euns: 0,998 19 8603 tunl 0.833=214
Pec | 0,04 mnl 0994088 Pe< | 198803 0.833314
£, 0.06 0. 988363 e, 19,9003 0533514
003 0980936 = 1992032 0.833314
— |01 0.971923 — | 19.9403 0.833314
012 0961445 19.9603 0833314
0.14 0.949636 - 19.9803 0.833314
B g » B | 20,0003 0833314 v

Begin of the Environment Quality-table (left) and end of the Tourism-table (right)



The diagram shows the development of Environment Quality, Tourism and Environmental Stress for a
period of 20 years.
(Take notice of the different scaling on the vertical axis.)

Environment Quality and Tourism

2 Tourists

1 Quality
2 Tourists*Quality

1 Tourists
0.5 Quality
1 Tourists*Quality
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0 Quality
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Environmental Stress : runl Tourists*Quality

If we are interested in the relationship between Tourism and Environment Quality then we can plot the
respective phase diagram (and pose and answer questions like the following).

What is the effect of more or less advertisement?
We compare ADVERTISING = 5 with ADVERTISING = 1:

Tourism & Quality Tourism & Quality

1 1 Quality
1 Quality

0.75

0.5 Qualty
0.5 0.5 Qualty

0.25
0 Quality
0 Quality
0 0.10 030 0.50 0.70 090 1.10 1.30 1.50 1.70 1.90
0.10 030 050 070 09 1.10 130 150 170 1.90 Tourism

Tourism

Environment Quality : runl Quality
Environment Quality : runl Quality Environment Quality : run2 Quality

ADVERTISING =5 (left) compared with ADVERTISING = 1 (right).

We see that increasing advertising results in a remarkable short-term growth of Tourism but also in
remarkable loss of Environment Quality.

Phase diagrams for ADVERTISING = 1, 2, 3, ... could be displayed on the same axes.



The MS-Excel-Model

The “equations* of the VENSIM-model can be transferred 1:1 into the spreadsheet.

07
n72

The respective equations are:

Time
0
=C3+$B%$12

Env Quality
=B4

Growth E

0,249966331
0 248510305

=$B$7*14*(1-14/$B$6)

=|3+(D3-E3)*$B$12

Tourism

=B5

=J3+(F3-G3)*$B$12

0546877916 2 470957712
N 925A032431 2 A01709RAA4

Decrease E

=$B$8*H4

1,915990742
1 927N90RA2

A B [ c | D E F [ G [ H [ I [ J

1
2 | Time Growth Eny Decrease E Growth T Decrease T Env Stress Env Cuality Taurism
| 3 | a 1 IR
| 4 |Ini val Env Cluality 1 002 ] 01 a 01 01 1 01
| & |Ini Wal Tourism 01 0p4 0001996 0197604 499 0,125 0197604 0925 0,125
| B |Env Carrying Capacity 1 006 0005877206 0292102771 49704392 029334 0292102771 029405784 029334
| 7 |Env Regeneration Rate 10,08 0011501259 0352864264 4941816644 0387371984 0352864264 0985363329 0,357371954
| 8 |Env Destruction Rate 1 01 0,018700493 u] 7
| 9 |Tourism Decrease Rate 1 012 002728841 u] Touristm - Environmental Quality G
| 10 | Advertising 5 014 003706525 a 2
| 11| 0,16 0047827771 a 12 5
| 12 |Time Step (Year) ooz 018 0055367352 a ' 4
113 | 0z 0071482278 a % 1 3
| 14 | 022 0083975192 =T ﬂ—\ 1
i 0% odmemems o B°° —~ :
15 ; . £ N v
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18] o nsunasans T E oz c—'._._._-—-—-'-"'"// p
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20| 287 . ; ' ; ' 5
o1 0,5 1 15 2 25 b
22 Tourism ]
123 | F
| 24 | b
25 B
26 | Env Quality| &
27 | Taurism
% ------- Env Stress g
| 30| H
1 31| B
| 32 | B
133 | B
134 1y e T T T T TR B
135 | r T T T ] £
EE -1 g 9 10 11 B
| 37 | B
=]
Er]

0546877916 0,494197542 1915950742
N 9256032430 0 4802593111 1 927N90RE2

Growth T Decrease T Env Stress

=$B$10*14 =$B$9*J4

The last rows of the columns for Env Quality and Tourism are:

0.166318761

0.83862131

0.166302328

0.838480759

0.166286419

0.838341377

We can compare these values with the output of the VENSIM-model.

=14*J4



The Differential Equation Model with DERIVE

The system of differential equations for u (Environmental Quality) and v (Tourism) can easily be de-
rived from the description. The system reads as follows:

e
eq =err-eq- -4 —edr-eq-to
ecc
to'=adv-eq—tdr-to
The Runge-Kutta method for numerical solution of a DE-system is implemented in DERIVE.
Hence:

env_tour(err, edr, tdr, adv, ecc, eg_start, to_start, dt, n) :=
RK([err-eq-(1 - eq/ecc) - eq-to.edr, adv-eq - tdr-to], [t, eq, to],
[0, eg_start, to_start], dt, n)

Cemw_tour(l, 1, 1, &5, 1, 1, 0.1, 0.02, 50000001, 2]

Cemw_tour(l, 1, 1, &5, 1, 1, 0.1, 0.02, 50000001, 2]

Tourism

Environment Quality

The graphs of Environment Quality and Tourism are well known.

The last row of the table reads:

fenv_tourdl, 1, 1, 5, 1, 1, 0.1, 0.02, 50003 = [10, 0.1864091531, 0.8384357232]
501

We plot the phase diagram for ADVERTISING adv = 5:
Cenv_tour{l, 1, 1, 5, 1, 1, 0.1, 0.02, 50000,..02, 2]

1

0.8
0.6
0.4
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Applying the VECTOR-command we can plot all phase diagrams for adv = 1 through adv =7 on the

same axes:

VECTOR Cumw_tour(l, 1, 1, w, 1, 1, 0.1, 0.02, 50000003, 21, w, 1, 72

0.2 0.4 06 0.8 1 1.2 1.4 16 1.8 2 2.2 2.4

Later the DE model will help to find possible fix values.

The DERIVE implemented slider bars cannot be applied for studying the influence of various parame-
ters. The reason for this lies in the DERIVE programming. The RK-routine is based on a recursive

structure which needs too much memory when used with general parameters. To study the influence of
the parameters better I will try to model the problem with GeoGebra and with TI-NspireCAS. How-
ever, there is also an attractive way for varying the parameters with VENSIM (see end of the chapter).

The GeoGebra-Model

e a5 £ ‘{L . &
il L ‘e /|| . »
¥ v ¥ ¥ y v f
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It doesn’t need much time to set up the model but with dx = 0.02 we will meet very extended calcula-
tion times with this large GeoGebra spreadsheet. It can happen that the system hangs up completely.
Working with dx = 0.05 is successful.

I can display the phase diagram in the second plot window.

How to do it with TI-NspireCAS

I found much better calculation properties using the spreadsheet application of 7I-NspireCAS (Version
3.0). It is no problem at all running 500 time steps of 0.02 years.

For the parameters connected with the bold presented values sliders must be introduced in the Graphs
Application.

Then we can run the simulation in the Lists & Spreadsheet application. The values set by the sliders
are valid in the spreadsheet, too, because the variables are linked.

A B ilime D E F G H  Weny_stress iem.',qual itourism [ 2
ourism & En... GrowthE  Decrease.. GrowthT..Decrease...

EnvRegRate 1.0000... 0 0 0 0 0 0.10000000 10.100000...
EnvCarrCap  1.0000...0.020.. 0.000000.. 0.100000.. 5.0000.. 0.100000... 0.10000000 1.000000... 0.100000...
EnvDestrRate 1.0000...0.040.. 0.001996.. 0.197604.. 4.9900.. 0.198000... 0.19760400 0.998000... 0.198000...
Advertising 5.0000...0.060... 0.005877.. 0.292102.. 4.9704... 0.293840... 0.29210277 0.994087... 0.293840...
TourDecrRate... 1.0000...0.080.. 0.011501.. 0.382864.. 4.9418.. 0.387371... 0.38286426 0.988363... 0.387371...
dx 0.0200..0.100.. 0.018700.. 0.469339.. 4.9046.. 0.478460... 0.46933953 0.280936... 0.478460..
0.120.. 0.027288.. 0.551066.. 4.8596... 0.566985... 0.55106618 0.971923... 0.566985..
EnvQuallni 10.140.. 0.037065.. 0.627669.. 4.8072.. 0.652837... 0.62766951 0.961447... 0.652837..
Tourismini 0.1000..0.160.. 0.047827.. 0.698861.. 4.7481.. 0.735925... 0.69886148 0.949635... 0.735925...
0.180.. 0.059367.. 0.764437.. 4.6830... 0.816170... 0.764437950.936614... 0.816170...
0.200.. 0.071482.. 0.824274.. 4.6125... 0.893509... 0.82427421 0.922513... 0.893509...
0.220.. 0.083978.. 0.878319.. 4.5372.. 0.967890... 0.87831946 0.907457... 0.967890...
0.240.. 0.096672.. 0.926590.. 4.4578... 1.039278... 0.92659019 0.891570... 1.039278...
0.260.. 0.109395.. 0.969163.. 4.3748... 1.107649... 0.96916309 0.874972.. 1.107649...
0.280.. 0.121995.. 1.006167.. 4.2888... 1.172993... 1.00616748 0.857777... 1.172993...
0.300... 0.134336.. 1.037777.. 4.2004... 1.235311... 1.03777775 0.840093... 1.235311...
0.320.. 0.146299.. 1.064205.. 4.1101... 1.294614... 1.06420577 0.822024.. 1.294614...
0.340.. 0.157786.. 1.085693.. 4.0183.. 1.350925... 1.08569371 0.803666... 1.350925...
0.360.. 0.168713.. 1.102507.. 3.9255... 1.404273... 1.10250716 0.785108... 1.404273...
0.380.. 0.179013.. 1.114928.. 3.8321.. 1.454698.. 1.11492880 0.766432... 1.454698...
0.400.. 0.188637.. 1.123252.. 3.7385.. 1.502248... 1.12325261 0.747714.. 1.502248...
0.420.. 0.197548.. 1.127778.. 3.6451... 1.546974... 1.127778740.729022.. 1.546974...

N AAD N 2NCTDA 1 120009 2 CCON 1 CooQ27 1 1208an0808 N 7I1NA1T 1 Co0Q27 =

Al |"Tounsm & Env" F’T_‘

Enter the list names in the very first rows of columns C, I, J, and K. The list names serve for comfort-
able plotting the scatter diagrams.

The calculated points are presented connected and according to the choice of the lists we get very at-
tractive graphs which are reacting immediately on the sliders.
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SyntheSim with VENSIM

VENSIM offers a kind of sliders, which allows inspecting all stocks (box variables) and flows simulta-
neously when changing the parameters. However, the inspection windows are quite small. SyntheSim
is activated via the menu bar and results in a display as follows.

Tourism and Environment

ENVIROMMENT
REGEMERATION TOURISM
RATE ADVERTISING DECREASE RATE
IMITIAL WALUE IMITIAL YALUE
ENVIRONMENT QUALITY TOURIS R
ST F—
% QL sm v
Q.pr“nﬁﬁqr:-l: -'-'/\T a_\.

Enwronment

ENVIROMNMENTAL Enmronmental

CARRYING CAPACTY  ENVIRONMENT
o>  DESTRUCTION RATE
A1 T

I turned some “parameter screws* and you can see the graphs in blue in the mini-windows. However,
when moving the mouse over these mini windows they change their size offering a larger display.

We inspect the display of Tourism, Environment L00s
Quality and Environment Stress for the changed Tenristn L
parameter values. bi\—w pprﬁgqu
T ourizmm
1.352
These graphs are not of the quality of Nspire- or
GeoGebra-diagrams, but they can be produced ?
without any additional effort. It is not possible to 7]
use SyntheSim for displaying phase diagrams.
| 1] 20.0003

Environmental

Erw ronment —Z )
.\_@ﬂﬂ{ﬁ_marmﬂcalz "‘——-,__C

5 e —d

E nvironiment Cluality

JaE61

20.0003

Ervironmental Stress
2.973

20,0003
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Analytical calculation of the fix values for Environment Quality and Tourism

The fix values are the results of the demand that change rates of the stocks must become zero.

Therefore, we try to solve the following system of equations (with DERIVE):

#11:

#12:

#13:

#14:

SOLUTIDNS{D = er‘r‘-eq-[l - = ] — edriegito & 0 = adveeq - tdreto, [eq, to]]
ece
[ ] ]
ecCrarrtdr adveeccierr
adv.ecc.edr + err.tdr adv.ecc.edr + err.tdr
[ 1.1.1 1.1.5
[ 101+ 12105 1.1+ 14145 }

[0.1666666666, 0. 8333333333]

Compare the last rows of the tables of the models from above for adv =15 on page 8!

(2]

[3]
[4]
[3]

[7]

Hartmut Bossel, System Zool, 2, 3, Books on Demand, Norderstedt
http://www.hartmutbossel.de/ezooinf.htm

Vensim PLE, Simulationssoftware, fiir den Unterrichtsgebrauch, download free of charge
at: http://www.vensim.com/download.html

http://www.geogebra.org
http://education.ti.com

Hartmut Bossel, Systemzoo, coTec Verlag Rosenheim (CD inkl. VensimPLE)
http://www.cotec-verlag.de

http://www.public.asu.edu/~kirkwood/sysdyn/SDRes.htm

http://www.usf.uni-kassel.de/cesr/index.php?option=com_remository&Itemid=
141&func=fileinfo&id=109

(The ZOO MDL.zip archive contains English language versions of all computer simulation models)
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2 Predator and Prey (times 2)
A Variation of the classic Predator-Prey-Model

A predator population takes its energy mainly from two prey populations.

The stock of predators is coupled with the stocks of the prey populations by its hunting successes
when meeting (with the respective success rates). The prey stocks are increasing with — different —
growth rates. We have success rates of the predators and on the other hand we have specific loss rates
of the prey.

Again we start with the VENSIM PLE stock and flow diagram and the description of the parameters
and definition of the equations.

GROWTH RATE A GROWTH RATE B
LOSS RATE A LOSS RATE B
INIVALUE A INIVALUE B
Stock Prey A Stock Prey B X ]
Increase‘@—/ Loss Prey A Increase Prey B Loss Prey B
Encounters A Pred Encounters B-Pred
WINBYA IN::,VRAI\EIBJE
Stock z >
Predators
Increase Loss Predators ENERGY

Predators CONSUMPTION RATE
WIN BYB\_/( v \—/ PRED

All parameters and necessary equations are entered and can then be checked and printed in the

VENSIM-document. I did without entering units. Adding units makes a dimension analysis possible.
I also suppressed numbering of the entries.

INI VALUE A =1

INI VALUE B =1

INI VALUE PRED =1
WINBY A=0.1
WINBY B=0.1
LOSSRATE A=0.1
LOSSRATEB=0.1 , :
GROWTH RATE A =0.1 Lioness in Serengeti NP, Tanzania
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GROWTH RATE B=0.12

ENERGY CONSUMPTION RATE PRED = 0.1
Increase Prey A = GROWTH RATE A * Stock Prey A
Increase Prey B=GROWTH RATE B * Stock Prey B
“Encounters A-P*“ = Stock Prey A * Stock Predators
“Encounters B-P* = Stock Prey * Stock Predators
Loss Prey A = LOSS RATE A * “Encounters A-P*
Loss Prey B =LOSS RATE B * “Encounters B-P*

Increase Predators = WIN BY A * “Encounters A-P¢ +
WIN BY B * “Encounters B-P*

Loss Predators = ENERGY CONSUMPTION RATE PRED * Stock Predators
Stock Prey A = INTEG (+Increase Prey A — Loss Prey A,

INI VALUE A)
Stock Prey B = INTEG (+Increase Prey B — Loss Prey B,
INI VALUE B)
Stock Predators = INTEG (+Increase Predators — Loss Predators,
INI VALUE PRED)

INITIAL TIME =0
Units: Month
The initial time for the simulation.

FINAL TIME =200
Units: Month
The final time for the simulation.

SAVEPER = TIME STEP
Units: Month [0,7]
The frequency with which output is stored.

TIME STEP = 0.1
Units: Month [0,?]
The time step for the simulation.

Some prey in Serengeti National Park, Tanzania

I changed the order of the document output.

In Bossel’s original model a time step of 0.05 is used. Taking 0.1 does not result in a recognisable

change for the worse.

In the following the diagrams and the table can be produced, displayed and printed. All the diagrams

and tables can easily be transferred to other documents with Copy and Paste.
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Predator with 2 PreyPops
3
2
1
0
0 20 40 60 80 100 120 140 160 180 200
Time(Months)
Prey A 3
Prey B 3
Predators 3
These are the last rows of the table (for a later comparison):
i a=lEl:] Predator with 2 PreyPops  _[=[ES)/IMEERSTREC] Predator with 2 PreyPops  __[=[kS)
Time (MonthStock Prey A Stock Prey B Stock Prede & Time MfonthStock Prey & Stock Prey B Stock Predi#
195303 00110 0.5577 2.246 195,303 00110 0.3924 2.047
195 403 00109 0.55914 2.237 1959403 00109 0.5874 2.039
195503 00108 0.5853 2.228 195,503 00108 05826 2.030
199603 00106 05793 2219 195,603 00107 03778 2.022
199703 00105 0.5734 2.210 199703 00108 05731 2.014
199803 00104 05676 2.201 199.803  0.0105 05684 2.005
198903 00103 03619 2192 o |192.203 00103 05638 1.997 Z
< > < >
Euler method Runge-Kutta-method

For the numerical calculation we can choose between EULER-method and RUNGE-KUTTA-method.

The graphs presented here are based on the EULER-method realization.

Phase Diagrams

2.5

0.5

040 0.60 0.80

Prey A

1

1.20 140 1.60
Predators

1.80

2

220 2.40

Prey B
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I change some parameter values as follows:

GROWTH RATE A =0.15
LOSS RATE A =0.15
WINBY A=0.12

SAVEPER =1

Pred-2 Prey-Var

2 Prey A
2 PreyB
4 Predators

1 Prey A
1 PreyB
2 Predators

0 Prey A
0 PreyB
0 Predators

0 20 40 60 8 100 120 140 160 180 200

TIME (Months)
Prey A Prey A
Prey B Prey B
Predators Predators

The values at the end of the months are saved and printed in tables and graphs (SAVEPER = 1).

The differential equation model with DERIVE

For treatment with DERIVE 1 rewrite the problem as a system of ODEs which then will be solved nu-
merically using the Runge-Kutta-algorithm. I can use the System Zoo-time step = 0.05. Then I will
compare the resulting values for the last months with the values obtained with VENSIM PLE.

pr' = pr(wa- pa+wb- pb—Ir)

pa'=ga-pa—pr-pa-la ; pr(0) = pa(0) = pb(0) = 1
pb'=gb-pb— pr-pb-Ib

The respective function with all parameters can be defined ...

pp2(ga, gh, 1a, 1b, 1p, wa, wb, pa_ini, pb_ini, pr_ini, dt, n) :=
RK([ga-pa - la-pa-pr, gb:pb — 1b.pb.pr, pr-(wa.pa + wb.pb - 1p)1],
[t, pa, pb, pr], [0, pa_ini, pb_ini, pr_ini], dt, n)

... and then be evaluated (compare with the last rows of the VENSIM-table!).
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[ 199.85 0.01040077792 0.5661621969 2.000997472 ]
199.9 0.010348%96194 0.563905238 1.996753928

199.95 0.01029762295 0.5616692132 1.99249649

200 0.01024675712 0.5594539828 1.988225495 |

(pp2(0.1, 0.12, 0.1, 0.1, 0.1, 0.1, 0.1, 1, 1, 1, 0.05, 4000)),1[1, 2]
(pp2(0.1, 0.12, 0.1, 0.1, 0.1, 0.1, 0.1, 1, 1, 1, 0.05, 4000)),1[1, 3]

(pp2(0.1, 0.12, 0.1, 0.1, 0.1, 0.1, 0.1, 1, 1, 1, 0.05, 4000)),1[1, 4]

Predators

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

Finally we will create the phase diagrams selecting the respective columns of the matrix:
(rbb(0.1, 0.12, 0.1, 0.1, 0.1, 0.1, 0.1, 1, 1, 1, 0.05, 4000))1.1[4, 3]

(rbb(0.1, 0.12, 0.1, 0.1, 0.1, 0.1, 0.1, 1, 1, 1, 0.05, 4000))..1[4, 2]

2
1.8
1.6
1.4 Pred-Prey B
1.2
l U
08 Pred-Prey A |
red-Prey A
0.6 4/
/"
0.4 ‘—_
0.2
< -
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
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The MS-Excel-Model

The equations of the VENSIM-model can easily be transferred into the spreadsheet.

J4 - A =J3+(E4-G4)"5B515

A | Bl c | D] E F G | H | [ | J K |
1
| 2 | Time IncrA lncrB Loss A Loss B Incr Pr |Stock A Stock B Stock Predators
3 0 1 1 1
| 4 |Ini Value A 101 01 0712 0.1 0.1 0.1 1 1.0021 1.01
| 5 |Ini Value B 1 02 0101202 0101 0,101 01012 0,9999  1,0039038 1,0201202
| 6 |Ini Value Predatars 103 0101205 0,102 0,102 0,1024 099969882 1,00570962 1,030360205
| 7 |Growth Rate A 01 04 0101207 0103 0104 0,1036 0,99939531 1,007415704 1,040719534
| 8 |Growth Rate B 012 045 0101209 0104 0105 01048 0,99898836 1,00902032 1,051197613
| 9 |Loss Rate A 01 06 0101211 0105 0106 0106 0,9984769 1,010521767 1,061793776
| 10 |Loss Rate B 01 07 0101213] 0,106 0107 01071 0,9978593 1,011918371 1,072507261
| 11 |Energy Cons Rate Pred 01 0.8 0,1 01214 0,107 0,109 0,1083 099713638 1,013208493 1,083337206
| 12 |Win by A 01 09 0101216 0,108 011 01095 09963054 1,01439053 1,094282648
| 13 |Win By B 0.1 1010217 0,103 0,111 0,1106| 099536605 1,015462917 1,105342518
14 | 1.1 0101213 011 0,112 0,1117] 0,99431751 1.016424129 1,116515641
| 15 |Time Step (Month) 01 12 0099 0122 0111 0113 0,1129 099315837 1,017272684 1,127800729
| 16 | 1.3 0,099 01221 0112 0115 0114 0,99188971 1.018007147 1,139196385
| 17 | 1.4 0,099 01222 0113 0116 0115 0,98050904 1,018626133 1,1560701093
| 18 | 1.6/ 0,099 01222 0,114 0,117 0,1161| 0,98901633 1.019128304 1,162313223

It is no problem at all producing the time diagrams (I don’t present the phase diagram).

@D

Predators and 2 Prey Populations

N
()]

Populationen
»
|

—

60 80 100

120

Time in months

140

160

—— Stock A
—— Stock B
—— Stock Predators

180 200 220

Compare again the values given in the last rows of the Excel table (2000 rows!) with the respective
VENSIM- and DERIVE-values:

Stock A

Stock B

0.01051026 0.573381557
0.01038306 0.567588655
0.01025834 0.561906481
0.01013608 0.556333389

Stock Predators
2.21030495
2.20110769

2.191818393
2.182441023
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In System Zoo 2 we find the question which provision(s) could (should) be taken that population A
despite its shortcoming by its growth rate could survive population B?

This question could be answered much more comfortable applying sliders. We will introduce sliders in
Excel in a later chapter.

GeoGebra offers sliders but larger tables like this one need (too) long calculation times. We introduce
sliders with TI-NspireCAS.

Working out with 71-NspireCAS

In order to keep calculation time reasonable we take a time step of 0.25 (in System Zoo we have 0.05!).

B .time. B | G H .stock_a .stock_b .pred |

| Time..Incr A Incr B loss A  Loss B Incr P Stock A Stock B Stock Pr.

0 0.100000 0.120000 0.085000 0.110000 0.095000 1 1 1

Ini Value A 10.25.. 0.100375 0.120300 0.087345 0.112894 0.097864 1.003750 1.002500 1.023750
Ini Value B 10.50.. 0.100701 0.120522 0.089723 0.115806 0.100707 1.007007 1.004351 1.048216
Ini Walue Pred 10.75.. 0.100975 0.120664 0.092128 0.118726 0.103515 1.009752 1.005531 1.073393
1.00.. 0.101196 0.120722 0.094556 0.121647 0.106276 1.011964 1.006015 1.099271

Growth Rate A 0.1000...1.25.. 0.101362 0.120694 0.097000 0.124559 0.108975 1.013624 1.005784 1.125840
Growth Rate B 0.1200...1.50.. 0.101471 0.120578 0.099454 0.127450 0.111596 1.014714 1.004818 1.153084
Loss Rate A 0.0850...1.75.. 0.101522 0.120372 0.101911 0.130311 0114124 1.015219 1.003099 1.180983
Loss Rate B 0.1100...2.00.. 0.101512 0.120074 0.104363 0.133128 0.116540 1.015121 1.000615 1.208514
Loss Rate Pred 0.1000...2.25.. 0.101441 0.119682 0.106802 0.135890 0.118828 1.014409 0.997351 1.238649
Win by A 0.0850...2.50.. 0.101307 0.119196 0.109219 0.138584 0.120968 1.013068 0.993299 1.268356
Win by B 0.1100...2.75.. 0.101109 0.118614 0.111605 0.141196 0.122941 1.011090 0.988452 1.298598
3.00.. 0.100847 0.117937 0.113950 0.143713 0.124729 1.008466 0.982806 1.329333

Time step (month) 0.2500..3.25.. 0.100519 0.117163 0.116244 0.146119 0.126312 1.005190 0.976362 1.360516
3.50.. 0.100126 0.116295 0.118477 0.148402 0.127670 1.001259 0.969124 1.392094

The table for “only* 125 months:

ga=,100

0.000000
gb=.120

la=.100

0.000000
lb=.100

lp=.100

wa =100

wb =100

0.000000

.200

0.000000  .200000| |
0.000000  .200000|/
0.000000 200000

' 204000,

=
0.000000  .200000

.200000

(.‘.T'm e’_.s.-‘oc.fr_b)

/ .-‘r'.f-‘?e.m‘ed)

tim e,sfock_a)

10
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The stocks for A, B and the predators after 125 months (end of the table) are: 0.1716, 2.0971 und

1.1919. The respective values in the Excel-table are: 0.1590, 1.9387 und 1.3307.

The diagram looks very similar. It seems that the very rough simplification does not make worse the

modelling.

What could be done supporting prey population B to survive population A?

ga=.100

e
0.000000 .200p00
gb=.130

e
0.000000 200000
la=.085

0,000000  .200000
lb=.110

0.000000
Ip=.100

.200000| |

ORI SO /
0.000000  .200000)/
wa =085

O
0.000000 .200000
wb =110

==

(n’m e_.s:ock_a)

= J‘=f¥e.s:crs‘r_b)
0.000000 204060

x=time
« 53 |y pred

®

The diagram shows that appropriate steps should be taken to decrease the loss rate of A and to simul-

taneously increase the loss rate of B. A must be made “less attracting™ for the predators. s it possible

to adopt such protection mechanisms?

Finally we create the predator-prey phase diagrams for this “future* model:
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3 Collapse of an Ecosystem

A more complex simulation with a historical background

Bossel cites a source which explains the collapse
of the white-tailed-deer population in the Kaibab
Forest (North Rim of Grand Canyon) as a conse-
quence of shooting the predators which feed on
these deer.

Prior to 1907 there was a population of approx
4000 deer living on an area of about 320 000 ha.
Within a period of 15 to 20 years hunting preda-
tors (cougars, wolves and coyotes) was forced
and about 8000 of them were shot. This was fol-

lowed by an enormous growth of the deer popu-
lation. Sycamore Canyon, Kaibab National Forest

It was 1918 when the stock of deer had more than
decupled. This caused an overexertion of food
supplies. Until 1924 the deer population reached
a number of 100 000 animals. Caused by lack of
food 60% of the animals perished in the follow-
ing two winter periods.

Vegetation was destroyed in such a way, that
only half of the deer population compared with
its size before this development could exist in the

long run.

White-tailed-deer (Odocoilus virginianus)

1974 tried Goodman to simulate this system by a model which delivered results matching satisfying
with the real process.

Explanation of the model

The Deer feed on an AREA (320 000 ha) on Food. Increase Food is governed by its Regeneration
Time. The Growth rate Deer is a function of Food Supply. This is the amount of food available for
each animal. Food Demand depends on the stock of Deer and on the DAILY REQUirement of one deer
(2000 Kcal). Food grows again according to the MAX FOOD CAPACITY (480 Mio Kcal). Increase
Food is determined by the Regeneration Time which is a function of Vegetation Density.

What about the predators? The Deer population suffers Loss Deer by the PREDATORS, whose number
decreases linearly caused by shooting numbers. The Prey rate is a function of the Deer Density
(= deer/ha).

A more detailed explanation of the parameters is given in System Zoo.

Especially interesting is the use of functional dependencies which are given by tables (= nodes of the
describing functions). We will find these tables in the document under WITH LOOKUP.
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The simulation is running for 50 years with an increment of 0.25 years.

Note the use of the IF-function with its syntax very similar to the syntax used in Computer Algebra

Systems.
INIDEER PREDATORS
=~ % == Deer S )
IncregSe Beer Loss Deer
Growth rate <Time>
Deer Prey rate
Deer Densit
Food Supply Food Demand AREA
DALY REQU
INIFOOD
o X Food = ey
Increase Food Grazingh.oss
\\/‘ FEEDING
Regeneration PERIOD
Time
. MAX FOOD
Vegetaon . = cpapAcmY
Density

The document comprises all constants, all equations and all simulation parameters (originally pre-
sented numbered and in alphabetical order):

(01)  AREA =320000

(02)  DAILY REQU = 2000

(03)  Deer=INTEG (+Increase Deer — Loss Deer, INI DEER)
(04)  Deer Density = Deer/AREA

(05) FEEDING PERIOD =1

(06) FINAL TIME = 50

(07)  Food =INTEG (+Increase Food — Grazing Loss, INI FOOD)
(08)  Food Demand = DAILY REQU * Deer

(09)  Food Supply = Food/Deer

(10)  Grazing Loss =

IF THEN ELSE( Food Demand >= (Food/FEEDING PERIOD),
Food/FEEDING PERIOD, Food Demand )
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(11

(12)
(13)
(14)
(15)
(16)
(17
(18)
(19)

(20)

e2))

(22)
(23)

24

Growth rate Deer = WITH LOOKUP (Food Supply, ([(0,-1)-(10000,1)],
(0,-0.5), (500,-0.15),(1000,0),(1500,0.15),(2000,0.2) ,(200000,0.2)))

Increase Deer = Growth rate Deer * Deer

Increase Food = (MAX FOOD CAPACITY - Food)/Regeneration Time
INI DEER = 4000

INI FOOD = 4.7e+008

INITIAL TIME =0

Loss Deer = Growth rate Pred * PREDATORS

MAX FOOD CAPACITY = 4.8e+008

PREDATORS = WITH LOOKUP (Time, ([(0,0)-(50,300)],
(0,265),(5,245),(10,200),(15,65),(20,8),(25,0),(30,0), (35,0),(40,0),(50,0) ))

Prey rate = WITH LOOKUP (Deer Density, ([(0,0)-(0.35,60)], (0,0),
(0.0125,3),(0.025,13),(0.0375,28),(0.05,51),(0.0625 ,56),(0.125,56),(0.4,56)))

Regeneration Time = WITH LOOKUP (Vegetation Density,([(0,0)-(1,40)],
(0,35),(0.25,15),(0.5,5),(0.75,1.5),(1,1)))

SAVEPER = TIME STEP
TIME STEP = 0.25

Vegetation Density = Food/MAX FOOD CAPACITY

Let’s inspect function (21) Regeneration Time (Vegetation Density) as an example for working WITH
LOOKUP:

Editing equation for, - Regeneration Time

Regeneration Time

= wiTH Vegetation Density
LOOKL

P
Look |({0,0-(1,400],(0,35) 4025 146),00.5 &),00.75,1.5),(1,171
up
Tifps Unda | 7|8 + | “ariables lFunctiUnsl More l

Auziliary - . .

{[0]}| 41516 - Choose Initial Yariable. ..

with Lookup ¥ 112 3| *| |Wegetation Density

[~ Supplermentary olel .| ¢

As Graph | Help Cloa] o
Units: | j
Caom-
ment:

Minimum “alue Maximum “Yalue Increrment
Errors: | =
QI | Check Syntax | Check Model | Delete Wariable | Cancel |
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After pressing the As Graph-button the graph of the piecewise defined function is presented:

Graph Lookup - Regeneration Time

E

=3

put _ Output oA

E‘
]

[
[}
(5]

7

[=]
=
(]

L

KK

I ARRARGEGN

|
e |0 w|v=08052  y-4088 Rema: |1 =| Reset Sealing

I:IearF'cuints| Clear All F'u:uints| Eur->F|ef| ElearHeference| Hef->|:ur| Cancel |

] 4

We would be able to enter the nodes directly into the grid. It is easy to recognize that there is a linear
interpolation between the given points (nodes).

We run the simulation and inspect the first results.

How are the deer doing?
How develops the available amount of food?

How are the predators doing? (Thanks human interaction — they are doing obviously badly!)

White-tailed-deer in Kaibab Forest

100,000
600 M
400

50,000
300 M
200

(=)

-5 1 7 13 19 25 31 37 43 49 55
Time (Years)

Deer
Food
Predators
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The second graph shows the stock of deer as function of the food amount.

Deer stock as function of food amount

100,000
75,000
50,000
25,000

0

0 1.5¢+008 3e+008 4.5¢+008 6e+008
Food (Kcal/day) * Year
Deer

Starting point is at right bottom and the development ends on the left hand side.

The result of the simulation matches with the real historical occurrence. The reduction of the vermin
led to an explosion of the deer population which caused a disastrous overgrazing of the available food
capacity. A huge number of deer died of hunger and finally the deer stock became stabilized on a level
based on the much reduced amount of food.

As I am — unfortunately enough — no Excel-expert, I don’t know how to realize the functional depend-
encies together with their connected linear interpolations in an easy way in a spreadsheet.

It would be great if any reader of these lines could accomplish this chapter performing the simulation
with Excel. I would be very grateful for respective information.

I will come back to MS-Excel later.

But we can be glad having some other tools available to try with!
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The DERIVE-Model

I accepted the challenge treating this system with DERIVE.

There appears the same problem: how to realize the piecewise defined functions with the linear inter-

polations?

As a DERIVIAN one has immediately the idea to connect the points given in a matrix using the

CHI-function.

First of all the given data are fixed. Then my first attempt follows finding a function which is equiva-

lent to the LOOKUP-function.

8
[area iz 320000, feedper := 1, max_food_cap = 4.8-10 ,
0 0]
0 265 ]
0.0125 3
5 245
0.025 13
10 200
0.0375 28
pred :=| 15 £5 , preyr = , regtime
0.05 51
20 8
0.0625 56
25 0
0.125 56
L 50 0
0.4 56 |
DIM(pk) - 1
Tookup(x_, pk) := )3 yxlpk , x_, pk -
=1 1,1 7+ 1,1

8
day ly_requ := 2000, ni1_food := 4.7-10 , 1ni_deer ::= 4000}
0 -0.5
0 35
500 -0.15
0.25 15
1000 0
0.5 5 , gr_deer :=
1500 0.15
0.75 1.5
2000 0.2
1 1
L 200000 0.2
pk - pk
7+ 1,2 1,2
(e = pk D+ pk
pk - pk 7.1 1,2
7 +1,1 7,1

The graphs are looking pretty nice. Compare the graph for the regeneration time with the respective
VENSIM-graph (page 25)! On the first glance you will not recognize any difference.

35

loakup(x pred)
200
lookup(® regtime)

150 15

100 10

50 5

2 4 6 § 10 12 14 16 18 20 22 24 26 0.2 0.4 | 06 | 0.8 1

But don’t be happy too early! Inspecting the
value tables (e.g. the numbers of the PREDA- g 1 2 3 4 5 6
TORS) we recognize the deficiency of the +132.5 + 132.5 261 257 253 249 7 236

CHI-function in the nodes where the function is
undefined. Hence this implementation is of no
need for us.

24

1.6

25 26 27 28 29 30 31 32 33 34

o 0 o 0o o O ©0o 0O 0O O
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The next function fulfils our requirements.

Tux_, pk, )=
Frog

foz TF(pkilyl = x_ = pky2yd, (pki212 - pkaly2)/(pke201 — pkelpdd e - pkydydd + pkyly2, O3

pk = REST(pk)

Loop
If DIM(pk) = 1 exit
oz f+ IF(pkilil < = = pky2ul, Cpki212 — pkele2)/0pki20l — pkolyl) o2 - pkylyl) + pkyly2, 03
pk = REST(pk)

LIMCF, %, %)

The graphs fit exactly (nodes and segments) and the
value tables don’t show any exceptions.

TABLEC Tux, pred), =, 0, 503°
a1 P 3 < 5 5] 7
O 261 257 253 249 245 236 227
24 25 26 27 28 29 30 31 32

i 0o o 0 O 0 O 0 @

Before programming I always tried to work through the system(s) acting as a “human spreadsheet”.
I’d like to recommend this way treating such systems in classroom. Then the interconnections become
clear and programming and/or transfer to a “real” spreadsheet becomes very easy.

Here I benefit from the results of the VENSIM simulation because I can use its tables as a reference for
programs and/or any other treatments.

I try demonstrating the manual procedure — supported by the DERIVE made lu-functions — step by
step.
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The table consists of 16 columns.

In row 1 I start with Time = 0, FOOD = 4,7 - 10°, DEER = 4000 and PREDAT = 265. The numbers in
the last row indicate the order of calculation.

I go on with the entries for Food Demand, proceed with Browsing Loss and close the line with /n-

crease Deer. Then we enter in row 2 (Time = 0.25) the new amount of FOOD and the new DEER popu-
lation (13, 14) followed by 1 through 12. We can follow the formulae (equations) how they are listed
in the document.

Row nr Time | FoodDem | BrowsLoss | VegDens | RegTime FoodIncr FOOD
1 0 8-10° 8-10° 0.979167 | 1.041666 9.6-10° 47108
2 0.25 | 8.0025-10° | 8.0025-10° 0.98 1.04 9.23077-10° | 4.704-10°
3 0.50 4.70707-10°
@ @ ® ® @ oJe)
PREDAT | DeerDens | PreyRate | Loss Deer | Food Sup | GrRateDe | IncrDeer DEER
265 0.0125 3 795 117500 0.2 800 4000
264 0.0125039 | 3.00312 | 792.824 117563 0.2 800.25 | 4001.25
4003.11
® @ @ ® o]0} ole) 016}

®) Calculating the increases (for FOOD and DEER) one has to consider the time increment dx.
So for DEER(Time = 0.25) = 4000 + (800 — 795) - 0.25 = 4001.25.

The values in the columns for Regeneration Time (RegTime), Predators (PREDAT), PreyRate and
Growth rate Deer (GrRateDe) were found using the Tu-function (in analogy to WITH LOOKUP).

Tu(0.979167, nachwzt) =

Tu(0.0125,

beuterate) = 3

Tu(117500, zuw_r_h) = 0.2

1.041666

Tu(0.98, nachwzt) = 1.04

Tu(0.0125039, beuterate) = 3.00312

Tu(0.25,

raeub) = 264

The table from above can be transferred one by one into a DERIVE-program.

With DERIVE 1 collect all values in a table, too. For plotting the diagrams I have to select the respec-
tive columns.

First of all is a short function needed for the grazing
or Browsing Loss.

graz_loss(x, vy) :=
If x > y/feedper
y/feedper
X

The Tu-function was introduced earlier. The full program is following.
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kaibab(n, dx, i, tab, t, f_dem, brows_loss, veg_d, deer_d, predators,
reg_time, food_inc, prey_r, inc_deer, food_supply, loss_deer,

deer, food) :
PROG(
i=1,

tab := [["RNr", "Time", "FDem", "GrazL", "VegD", "RegTime",
"FoodIncr", "PreyR", "DeerLoss", "FSupply", "DeerIncr", "Food",

"Deer", "Predators"]],

t = 0, [deer := ini_deer, food := ini_food],
LOOP(

IF(i > n, RETURN tab),

f_dem := deer-.daily_requ,

brows_loss := graz_loss(f_dem, food),

veg_d := food/max_food_cap,

deer_d := deer/area,

predators := Tu(t, pred),

reg_time := Tu(veg_d, regtime),

food_inc := (max_food_cap - food)/reg_time,

prey_r := lu(deer_d, predr),

Toss_deer := prey_r.predators,

food_supply := food/deer,

inc_deer := Tu(food_supply, gr_deer).deer,

tab := APPEND(tab, [[i, t, f_dem, brows_loss, veg_d, reg_time,
food_inc, prey_r, loss_deer, food_supply, inc_deer, food,

deer, predators]]),
deer := deer + (inc_deer - loss_deer) -dx,
food := food + (food_inc - brows_loss) -dx,
t :+ dx, i :+ 1))

The first 4 rows are — very enjoyable — completely corresponding with the manually calculated table

and the VENSIM-results as well.

kaibab(4, 0.25)

DeerLoss FSupply DeerIncr Food Deer Predators ]
795 117500 800 470000000 4000 265
792.825 117563.2614 800.25 470400000 4001.25 264
791.0423593 117585.4543 800.62125 470707067.3 4003.10625 263
789.603137 117573.8433 801.1001945 470942143.8 4005.500972 262

These are the values for FOOD and DEER for the last three quarters of a year.

(kaibab(202, 0.253) w2, 12, 13]
[200, 200, 202]

49,5 14277004, 0601 14566.1776742
49,75 14277004, 0192 14544, 4896531

50 14277003988 14524, 4282306

[ RNr Time FDem GrazlL VegD RegTime FoodIncr PreyR
1 0 8000000 8000000 0.9791666666 1.041666666 9600000 3
2 0.25 8002500 8002500 0.98 1.04 9230769.23 3.003125

3 0.5 8006212.5 8006212.5 0.9806397235 1.038720552 8946518.547 3.007765625

4 0.75 8011001.945 8011001.945 0.9811294662 1.037741067 8728435.7 3.013752431

30



Please compare the DERIVE-diagrams with the plots generated with VENSIM (pages 25, 26)

DELETE((kaibab(202, 0.25))y1[2, 13], 1)

10M5
Deer

&0000

60000

40000

20000

DELETE((kaibab(202, 0.25))41[2, 12], 1)

5108

Food "
4108

3108

2 108

108
Years

DELETE((kaibab(202, 0.25))41[12, 13], 1)

105

Deer

Food

1018 2 108 3 10M8 4 108 5 10%8

I promise to try modelling the system by using differential equations later.

For treating this problem with a spreadsheet program it would be useful to approximate the WITH
LOOKUP functions for PREDATORS, Prey rate, Regeneration Time and Growth rate Deer by an ,,or-
dinary* function.

This is a nice task for its own. Sliders and meaningful considerations lead to appropriate functions.
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701985 53
pred_f(x) := preyr_f(x) :
0.6625.x - 174.9.x

e + 2649 1 + 529.e

n
w
=+

60
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0.01 0.02 0.0 0.04 0.05 0.06 0.07 0.08 0.0 0.1 0.11 0.12 0.13

5 10 15 20 25 30 35 40 45 50

- 3.7653.x - 0.0015.x
regtime_f(x) := 34.4089.¢ gr_deer_f(x) ;= 0.23 - 0.78.e

\\40 02

5007 1000 1500 2000 2500 3000 2500 <

01 02 0,2 04 05 06 07 0.8 0.9 1

—06

How good are these approximations? We can check this by replacing the lu-functions in program
kaibab gaining program kaibab_f. Then we will compare the graphs of the deer population derived
from both programs.

105

S0000

80000

70000

60000

50000

40000

30000 with functions
20000

10000

The result is impressive, isn’t it? The graphs for the food are almost identical, too.

These functions make modelling with spreadsheet much more comfortable. Now let’s try MS-Excel!
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The MS-Excel-model

We could take over the functions from DERIVE but there is a “SOLVER* available in the spreadsheet
program which is a very versatile tool. We need some “inspiration” from the form of the scatter dia-
grams in order to make the right decision for the type of function which we should choose for the ap-

proximation.
D10 hd & =SUMME(DS: D)

e &
1 |Predators Solver-Parameter @|
| 2 |Year Number | Model SE Ziglzele:
| 3 | 0 265 25044848 20,8193 | Zewert:  OwMax @Mn O Wer: 0 Schiefen
| 4 | 5 245 251,99577 48,94082 | Veranderbare Zelen:
| 5 | 10 200 198,13951 346143 | [$ag12:40412
6 | 15 65 65559223 031273 | nebenbedingungen:
| 7 | 20 8 8,9420683 0,887493
5 25 0 0974955 0950537 —
| 9 | 50 0 129E-05 1BBE-10
10 SSE [ 8537239 .
EIE 5 . -
12| 1001219 3845543 1,3486661 -044947 o s

“Inspired by DERIVE 1 choose for the predator function the form ﬁ and enter in cell C3 as
+c-e

follows: =SA$12/($B$12+$CS12*EXP(-SD$12*A3)).

We enter initial values for the solving (= iteration-) procedure in cells A12 to D12 — and this is the
trickier part of the task. However, here we can refer to earlier results again. I found approximating the
growth rate of the deer the most difficult.

In the SE-column are the squared errors of the 317.477
. 0.733 +
model values with respect to the real values. Cell ~ 132.95.x

- 5.654 + 731.755.
D10 contains the sum of the squared errors * €

which should become (absolutely) minimized (= 60
0).

Now we see that the SOLVER delivers obvi-
ously better approximating functions than we
had found earlier. It doesn’t need some calcula-
tion to get this insight, just compare the graphs 10
with the graphs on page 32! =

0.02 0.04 0.06 0,08 0.1 0,12 0.14 016 018 0.2 0.22 0.24

~ 0.0013.x
- 3.654-x 0.222 - 0.726.¢
35.199.e
40
0.2 -
i

3

500 1000 1500 2000 2500 2000 2500 4000 4500 5000 5500 €
20
10

L 0.1 0.2 0.3 04 0,5 0.6 0.7 0.8 0.9 1 1.1
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Using these functions and according to the strategy of

page 30 one can fill in the Excel worksheet.

It is no problem to take a time increment of 0.25 years.

Calculation is very fast.

100122

0.4495.x

384.55 + 1.3487.e

The peak of the deer population is a little bit shifted but the message of the graph is quite the same as

before.

See here a part of the worksheet together with the respective diagram.

Parameters:
Time | Food Demand GrazingL |VegDens RegTime FoodIncr FOOD

Area 320000 0 8000000 8000000 0879167 0883177 1017110617 470000000
Feeding Period 1 025 8064887,293| 8084887,292 0980297 0979123 9658870,723 4705427765
MaxFoodCap 4 .8E+08 05 81295289903 8120828,003 0931128 0976157 9270087 698 4700412724
Ini-Deer 4000 075 8194800,688 8194800,688 0981727 0974023 9005115196 4712288121
Ini-Food 4 7E+08 1 §250780,262 | 8250780,267 0082140 0972522 8810711041 471431330,7
Dayly Requirement 2000 1,25 8324748316 8324748316 0982436 0971503 8678181298 4715691234
dx 025 15 5380688618 8380658,618 098262 0970843  8533009,36 4716574816
17083118
100000 1730654 2
17313903
90000 /\ N715749,7
1687697 4
50000 ] \ 1650735 2
20000 1605644 8
/ \ 15556224
BO0O0 71501492
/ \ —DEER 14441912
50000 / \ — FOODAD000 1384449 6
. —_ * 13227965
40000 /\ \ PREDATORS * 100 B
VAN e
30000 L 0621306
\ / \ Te— 0995679,7
10000 70927282
/’& L 1857886, 1
0 : ; . T : 07874012
0 10 20 30 40 50 60 70715700
Zeit 6426206
70567967
~ : : o o 70491508

PREDATORS
2594434788
2593406929
2592201949
2590854996
2589349519
2587667078
2585787148
2533686836
258,1340896
257 8720959

257579575
2572530525
256,8886739
2564821947
2560288926
2555235782
254 9605298
2543334565
253 6354564
252 8589761
2519957713
2510368717
2489725516
2487923075

247 434848
246,0380972
2444392162
242 6746487
2407301929
2385911079
236 2433586

Bossel poses an interesting question and task:

What would have been an appropriate shooting strategy (for the predators) to

achieve a stable deer population without causing the collapse of the grazing capac-

ity?

For answering a question like this application of sliders seems to be best suitable. GeoGebra and
TI-Nspire (and MS Excel, of course) provide this valuable tool. DERIVE does also but we explained
earlier why we cannot use the sliders with DERIVE in problems like this.
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The GeoGebra Model

We use again the DERIVE-made approximating functions. The first model is set up with the given
predator function in order to check whether the results are the expected ones.

The next screen shot is a copy of the GeoGebra-screen with the diagram of the deer population and the

scaled food stock (FOOD/10000).

As the GeoGebra-spreadsheet needs long calculation times I increased the time step up to 0.5 which
does not cause essential changes of the results as the diagram is showing.

. Kaibab.ggh (B =E)
File Edit ‘“iew Perspectives Options Tools Window Help
/ f> @ *|llag "}' Move
5 5 £ ¥ o 5 | Drag or select objects (Esc) o
Algebra ] Graphics EEX Spreadsheet HEE
= Free Ohjects 110000 | P Q
© area=320000 1 ~
2 daylyrequ = 2000
O dx=0§ 100000 . 2 (0,4000) | (0, 47000)
O feedper=1 3 | (05,3946.4. | (0.5,47180
-0 grrd(x) = 0.23 — 0.78 - 2.71828~10.001% L) 4 | (1,3890.17...| (1, 472675...
- - ® —
5 maxfcap = 480000000 5 0000 5 || (15,38308... | (1.5,47312
o = B e e
2 pr(x) + 17629 271828 1174 & | (2,3768.31 . (2, 473381
701985 ° 7 || (25,9702.2... | (2.5,47355...
-0 pred(x) = oo 80000 —
2.7182896625« + 2649 ° 8 | (3,3632.52. | (3473697
O rt(x) = 34.4089 - 2.71828 137653 DEER 9 || (3.5,3558.7... | (3.5,47382...
= Dependent Objects 70000 ° ® 10 || (4,3480.74.. | (4,47395 8
© Ly = {(0,47000),(0.5,47180.06874), (1 N oo b
@ L = {(470000000,4000),(471800687.£ = i (8
-0 Listel = {(0,4000),(0.5,3946.47825),(| so0o0 s (El, (980111117 | (5, 4749390
. 13 | (5.5,3218.0... | (5.5,47438
° 14 | (8,3122.24...| (6, 47463 4
50000 . 15 | (6.5, 3020.6... | (6.5,47469...
v——-\ ° O 16 | (7,2914.72.. | (7,47486.8
0000 FOOD s, 5 17 | (7.5, 2805.0... | (7.5,47504...
10000 .o ° 18 | (8,2692.79... | (8,47523.0
o ° 19 | (8.5,2579.5... | (8.5, 47542
30000 . 5 % 20 || (9,2487.50... | (9, 479612
. ° %, 21 || (9.5,23606... | (9.5, 47560
°
20000 e . '\ﬁ__ 22 || (10,2262.2...| (10, 47599
. 23 || (10,8, 2177.... | (10.5,4761..
L
K o 24 || (11,2112.3.. | (11, 47632
Ll .." o 25 | (11.5,2072.... | (11.5, 4764...
Nﬁ ° 26 || (12,2062.5.. | (12, 47654
0 ."o—-mm 27 | (125,2088. . (125, 4765
0 5 10 15 20 25 30 35 10 45 S0 (o5 | (13, 21519, | (13, 476s8...
29 || (13.5,2256.... | (135, 4765
-10000 30 | (14,24020. (14, 47638
31 || (14.5,2589.... | (14.5,4761...
av Il (15 oRIRA |15 47500 &
ail 3| -20000 < i >
Input ]
- =

+ Kabab -

Let’s try to find an answer for Bossel’s question. After some — exciting — attempts I decided to intro-

duce the following shooting strategy.

I will have a radical shooting of @ animals annually for the first m years followed by reduction to b
beasts per year. The respective “predator function” is entered in cell H2 (with the corresponding time
in cell A2). There is nothing else to change in the spreadsheet from above.

F G H | J K

Cr FOOD Predators Deer Dens Prey rate Loss Deer I

374.83... 470000000 265 0.0125 38771 1027.43122

¢ % 914.88101

808.5996

Mumber H2 813.37807

42 5 m, 265 - 3 A2,-(b) A2 + rn (b - 2 + 285 2 v| o v ||818.61207

824.34787

[ Ok l [ Cancel ] ’ Apply l [ Ohject Properties... ] 830.63636

| Irororre——rr oo re T 837.53338

B2.0371|472961823.3... 210 0.0134 4.02429 845.10001

|19.l]49... 472851409.8... 210 0.01362 406382 853.40274
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Calculation of the first complete table needs some time but then the diagram is reacting immediately

on the change of the parameters by moving the sliders.

Starting with shooting 55 animals in the first year we can then keep the predator population on a level

of 210 in order to achieve constant food supply for the deer. The number of deer stays stable with a

stock of about 7360.
= Free Objects P Q ‘
»a=55 m=1 1
2 area= 320000 e — —
S b=0 12000 a=55 2 (0,4000)  {0,4700)
> daylyreq =2000 _— e 3 [(05,3946.. (05 4718,
2 dx=0.5 boo 4 |(1,39426.. (1,4726.7.
e 3 078, 2718251104 -— 5 [115.3991 . (15,4730
::1'_ 1(") = e e 10000 6 |12.40441 (247319
> maxfcap = 480000000 |7 |(25.4099 (25,4731
3 53 8 [(3,41592. (3,47314
Cex) =3+ 1+ 529.2.71828 111748 o000 DEER 9 |(35,4222 (35,4730
5 m(x) = 34.4089 . 2.71828 1137093 10 [(4,42890  (4,47296
= Dependent Objects 11 |{45,4350 . (45,4728
> Ly = {(0,4000), (0.5,3946.28439), (1 .,f 12 |(5, 44343 . (547273
> L = {(0,4700),(0.5,4718.00637), (1 6000 & 13 |(55.4513 (55,4726
@ Lz = {(4700,4000),(4718.00687,394 & 14 |6 45957 (5,474 7.
L) M
_.". 15 (65,4652, (65 4723,
j 16 (747733 (7.4721.7.
4000+ FOOD 17 |(75,4367... (75,4720,
100000 18 |(8,49662 . (8, 47185,
19 (85,5067 .. (85 4716,
2000 | 20 (8, 51727, (9,4715.00
21 (85,5280 (95,4713
22 (10,5390 (10,4711
23 {105,550, (105,470
S . . . 24 (11,5614, . (11,4707
-5 5 10 15 20 25 30 35 40 45 50 1
25 |(115,572. (115,470
The phase diagram Food-Deer shows a sig-
. (4574 89368, B342.54179)
nificant convergence, too.
But this is not the only one possibility to ob- . .
tain a stable high deer population. .
b=0
It makes fun to experiment to reach a more or
less stable deer population on a lower or
higher level. -
4700, 40 _._-
You can also introduce a moderate constant
shooting rate or any combination. Here we
have only an “exogenous” regulation of the
predators. But it would also be possible to
consider “endogenous® factors like natural
dying rate etc and include this in the simula- _ i ; ; .
4580 4600 4620 4640 4660 AERO A4T00 Aa720 4740
tion.
Good Sport!

36



Working with TI-NspireCAS

In the beginning I had some troubles with the spreadsheet application but by and by it worked pretty
well finally. The diagram looks the same as the GeoGebra graph. Calculation of the table works much
faster which makes smaller time increments possible.

Transfer of the DERIVE-program into the T/-NspireCAS-language is an easy task.

luf(x,pk) is the table function corresponding with the Tu-function in DERIVE:

Define luf(x,pk)=

Func

:Local f
:f:=when(pk[1,1]=x_<pk[2,1],((pk[2,2]-pk[1,2])/(pk[2,1]-pk[1,1]))*(x_—pk[1,1])+pk[1,2],0)
:pk:=subMat(pk,2,1,dim(pk)[1],2)

:While dim(pk)[1]>1
f:=f+when(pk[1,1]<x_<pk[2,1],((pk[2,2]-pk[1,2])/(pk[2,1]-pk[1,1]))*(x_—pk[1,1])+pk[1,2],0)
:pk:=subMat(pk,2,1,dim(pk)[1],2)

:EndWhile

Afx_=x

:EndFunc

See the program which provides the respective lists which are the necessary base for the graphic
representations.

Define kaibab(n,dx)=

Prgm

:Local i,t,deer,food,f_dem,brows_loss,veg_d,deer
:Local predators,reg_time,food_inc,prey_r

:Local loss_deer,food_supply,inc_deer

Wi=1:t=0

:deer:=ini_deer:food:=ini_food
:ld:={deer}:lf:={food}:ltime:={t}

:While isn

: f_dem:=deer*daily_requ

: brows_loss:=when(f_dem=((food)/(feedper)),((food)/(feedper)),f_dem)
: veg_d:=((food)/(max_food_cap))

. deer_d:=((deer)/(area))*1.

. predators:=luf(t,pred)

: reg_time:=luf(veg_d,regtime)
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: food_inc:=((max_food_cap-food)/(reg_time))

: prey_r:=luf(deer_d,preyr)

: loss_deer:=prey_r*predators
food_supply:=((food)/(deer))

: inc_deer:=luf(food_supply,gr_deer)*deer

. deer:=deer+(inc_deer-loss_deer)*dx

: food:=food+(food_inc—brows_loss)*dx

: t=t+dx

: ld:=augment(ld,{deer})

: [f.=augment(lf,{food})

: ltime:=augment(ltime,{t})

D=+

:EndWhile

:Disp "Deer in Id, scaled Food in Ifs, Time in ltime"

:EndPrgm

The Calculator-application contains the data and the program call.

o0 35| (0.000000 35.000000

. 0.25 15 0,250000 15,000000
reStime= g5 5 0.500000 5.000000
075 1.5 0,750000 1.500000
11 11.000000 1.000000 |
[ 0 -05] 0.000000  -0.500000]

500 -0.15 500,000000 -0.150000

or_deeri=| 1000 0 1000.000000  0.000000
1500 0,15 1500,000000 0,150000

2000 0.2 2000,000000 0,200000

| 200000 0.2 | | 200000.000000 0.200000 |
area:=320000;feedper:=1.max_food_cap:=4.8 10° 480000000.000
a’a:f'{}’_requ:=20D0:inijoad:=4.?-IDB:im'_deer:=4OOO 2000.000000

kaibab_var|200,0.25)

Time in ltime, Deer in ldv, Food in lfv_scal, Predators in lprv_scal

IDor:re"

Lists Itime, Id and Ifs are the base for the scatter diagrams in the Graphs & Geometry application.

The next screenshot shows the already known development of the deer population together with a
representation of the food available in a suitable scaling.
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We have seen the phase diagram, too, produced with other tools.
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I promised to use the sliders with T/-Nspire. So, let us try!
I change the definition of the shooting strategy a little bit. I will keep the shooting numbers constant

for the first m years until the predator population reaches a certain given number a. This number shall
be kept stable. I will stickto my “philosophy” and introduce sliders for m and a. See a part of the pro-

gram.



While i=n
S dem:=deer-daily_requ

brows_loss;=when

veg_di=—4204
max_food_cap
deer_d:= deer, 1.
area

reg_time: =33{f{veg_a] J‘egﬁme)
max_food_cap—food

Jood _inc:=
reg_fime

prey_ri=| r{f( deer_d,p r'eyrj
loss_deer=prey_r-predators
food

deer

Jood _supply:=

deer'::a’eer*—k(r‘nc_deer—!oss_deer dx
Sfood: =food+(food_inc—br‘ows_ioss)- dx
t=tdx

—
predators: =when(x£m,

ii=it1
EndWhile

Ifv
v _scal.=———:Iprv_scal.=lprv-100
- 10000 pri— ?

EndPrgm

dem> food  food
T feedper’ feedper’”

inc_deeri=deer Fz{f(food_supp!y,gr‘_deer‘)

65
-x+265,a]|x=r

m |
Idv:zaugment[fdv, { deer'}): {fwzaugment(a_fﬁg {food})
pr:=augment(!pm {prea’a:ors}): Iﬁme:=augment[!ﬁmg { z})

Disp "Time in ltime, Deer in ldv, Food in lfv_scal, Predators in lprv_scal”

The predator function is given under predators:=.

Food
10000

a=100.

U SUSE
0.000000  200.000000

m=10.

0.000000  50.000000

5000

Itime,lfv_scal

(Efr’me,fpiﬂ.’_scaf)

30

x+ltime
@ 52 |ylfv_scal

Working with sliders using the program has the disadvantage that after every change of the parameters
(moving the sliders) the program must be run again. Then the diagram is adapted immediately.
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It is much more comfortable to use the Spreadsheet application. The graphs are manipulated directly
moving the sliders. The Spreadsheet is not presented here.

You can see two — of many others — ways to reach Bossel’s goal with different stable deer populations.
According to the graph below we should decrease the predator stock within the first 20 years linearly
down to a number of 150 and then keep this number of predators for the future.

61377.7

¥

m =20,

=
0.000000 50.000000
a=150.

=
0.000000 200.000000

(tfood_in_10000)

(f, preds_times_1 OO)

5000

56.83

x+«t
@ S3 Lu— preds_times_100

I mentioned in an earlier note my intention to try an approach via the numerical solution of the
respective system of differential equations. Voila, it works as you can see in the following.

The ecological catastrophe as a system of differential equations

The form of the differential equations can be derived directly from the VENSIM-equations:

dd

—=d-gr _deer f

dt

daf

() i{ ) st
d area

max _food cap— f

regtime _f (

f

max_ food cap

j —graz _loss(dayly _requ-d)
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I am using the Runge-Kutta-routine of DERIVE again.

f d max_food_cap - f
RK| | gr_deer_f| — |-d — preyr_f spred_f(t), =

d area f A
regtime_f

max_food_cap

N
graz_loss(dayly_requ.d, )|, [t, d, f], [0, ini_deer, ini_food], 0.25, 201 (y1[1, 2]

~

It would be possible to apply the LOOKUP-routines but RK cannot work through all 201 rows of the
table in one step.

Selection of the first and second column shows rise and fall of the deer population:

105
Kaibab with functions
S0000

&0000

Kaibab with DE

70000

60000

50000

40000

30000

20000

Kaibab with LOOKUP

10000

The plot displays all deer-plots and allows comparison..

This model fascinated me indeed, because it offers so many opportunities for treatment. Description of
the piecewise defined functions (WITH LOOKUP) by one single function requires some fantasy and
knowledge about possible function types. There is no “right” answer and this can be stated about most
of modelling problems.

Comparing between applying a program (which must be written in advance) and spreadsheet is charm-
ing and exciting as well.

Use of sliders offers an important additional quality and provokes again interpreting the results.
Besides the mathematical point of view this model is demonstrating once more how an intervention in

natural procedure (even if in best intention) can destroy the balance of environment and can result in
unforeseen consequences.
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4 Population Dynamics

with variable birth and death rates

We describe the development of a population
(initial value = 1000) where births and deaths as
well are changing linearly with time. Both rates
decrease within a certain time interval constant
from an initial to a final value.

I start with the VENSIM — simulation diagram.

Right: Elementary school in Hellville,
Nosy Be,Madagascar

POPULATION DYNAMICS with
variable Birth- and Death rates

INIPOPULATION

Population iy
BmU \\—/Dleaths
Blrth rate Net Growth Rate Death rate
INI BIRTH RATE
FINAL BIRTH RATE INIDEATH RAT FINAL DEATH RATE
LAST YEAR
FIRST YEAR LAST YEAR FIRST YEAR
BIRTHS BIRTHS DEATHS DEATHS

Here are more constants and fewer equations. But we meet something new, the RAMP-function. It
describes the constant change of Birth- and Death rates.

The document contains all parameters together with their assigned values and all equations which all
have been entered in alphabetical order:

(01)  Birth rate = INI BIRTH RATE + RAMP((FINAL BIRTH RATE — INI BIRTH RATE)/
(LAST YEAR BIRTHS — FIRST YEAR BIRTHS), FIRST YEAR BIRTHS,
LAST YEAR BIRTHS)

(02)  Births = Birth rate*Population

(03)  Death rate = INI DEATH RATE + RAMP((FINAL DEATH RATE — INI DEATH RATE)/
(LAST YEAR DEATHS — FIRST YEAR DEATHS), FIRST YEAR DEATHS ,
LAST YEAR DEATHS)
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(04)
(05)
(06)
07)
(08)
(09)
(10)
(11
(12)
(13)

(14)
(15)
(16)
(17
(18)

(19)

Deaths = Death rate*Population
FINAL BIRTH RATE = 0.01
FINAL DEATH RATE =0.012
FINAL TIME = 2100

FIRST YEAR BIRTHS = 2010
FIRST YEAR DEATHS =2010
INI BIRTH RATE = 0.04

INI DEATH RATE =0.015

INI POPULATION = 1000

INITIAL TIME = 2000
The initial time for the simulation.

LAST YEAR BIRTHS = 2060

LAST YEAR DEATHS = 2030

Net Growth Rate = Birth rate — Death rate

Population= INTEG (Births — Deaths, INI POPULATION)

SAVEPER = TIME STEP
The frequency with which output is stored.

TIME STEP =0.25
The time step for the simulation.

Graphs of the rates explain the name of the function RAMP:

The next diagram shows how population develops. In our case birth rate decreases faster than the

Birth, Death and Net Growth Rate

0.05

0.035

0.02 --—\‘\‘“N\\-\\\\
0.005 ““‘~\\\\\\‘

-0.01

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
Time (Year)

Birth rate : popdyn
Death rate : popdyn
Net Growth Rate : popdyn

death rate.
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Population Dynamics

125
2,500

62.5
1,250

/\

0o b—mmm" b

0

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
Time (Years)

Births : popdyn
Deaths : popdyn
Population : popdyn

The results can be presented in form of a table, too. See here the last rows of the table.

TIME STEP in System Zoo is 0.1. (My TIME STEP used is 0.25). The results do not really differ as you
can see comparing the next two details of the respective tables.

BEE| & ¥ BB | Fpopdyn | o % Vi
S ='E5‘II"WBJ
w2 Time (Year) Births Deaths Population
G 2097.75 2216 26.59 2,216
oo, 2098 2215 26.58 2,215
= 2098.25 22.14 26.57 2,214
20985 2213 26.55 2,213
2 2098.75 2212 26.54 2,212
4 2099 22.11 26.53 2,21
2099.25 22.09 26.51 2,209
2099.5 22.08 26.50 2,208
R 2099.75 22.07 2649 2,207
2100 22.06 26.47 2,206 =
El & {BE 5ET||JI]|][|yn X F
=nPII*IBJ
Time (Year) Births Deaths Population
2099.14 22.09 26.51 2,209
2099.24 22.08 26.50 2,208
2099.34 22.08 26.50 2,208
2099.44 22.08 26.49 2,208
2099.54 22.07 26.49 2,207
2099.64 22.07 26.48 2,207
2099.74 22.06 2647 2,206
2099.84 22.06 2647 2,206
2099.94 22.05 26.46 2,205
2100.04 22.05 26.46 2,205

W

The number of the births and deaths in columns 2 and 3 must be interpreted as numbers per year — and
Births — Deaths

not per time step. Hence net increase of population per quarter of a year is 2
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The DERIVE model with ITERATES

The ITERATES function is an excellent tool of DERIVE for modelling recursive procedures. It is not
very easy to handle for many students and other users but it is very efficient.
Since DERIVE is programmable ITERATES can be replaced by a small program with a loop.

ramp(x, aw, ew, az, ez) :=

If x < az
aw
If x < ez
aw + (ew — aw)/(ez - az).-(x - az)
ew

population(n, dt) := ITERATES([t + dt, bev + (ramp(t + dt, 0.04, 0.01,
2010, 2060) — ramp(t + dt, 0.015, 0.012, 2010, 2030))-bev.dt], [t, bhev],

[2000, 1000], n)

The “RAMP-function* which we met in VENSIM has been defined now and all rates can be presented:
ramp(x, 0.04, 0.01, 2010, 2060)

ramp(x, 0.015, 0.012, 2010, 2030)

ramp(x, 0.04, 0.01, 2010, 2060) - ramp(x, 0.015, 0.012, 2010, 2030)

Birth Rate
Net Growth Rate
Death Rate
1590 2000 2010 2020 2030 2040 2050 e

Let’s iterate 401 times using a time step of 0.25 years. This is sufficient to reach the 100 years
between 2000 and 2100. Syntax of the ITERATES command is a DERIVE speciality.

Output is given in form of a matrix containing the coordinates (time, population) of the points which
can be plotted immediately.

It turns out that reduction of time step to 0.1 does not result in a change of the graph. The graph on the
next page shows both plots superimposed. One can hardly notify any difference.
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population(401, 0.25)

population(1001, 0.1)

2000

1000

2000 20120

2040 2060 2080 21

no

Next table shows the three first and three last rows of the matrix for time step 0.25 using first the
ITERATES-construct population and then the program pop from below.

(population(401, 0.25))

[1, 2, 3, 399, 400, 401]

2000 1000

2000.25 1006.25

2000.5 1012.53

2099.5  2193.47

2099.75 2192.38

2100 2191.28

(pop(40L, 0.25))
[1,

2000 1000
2000.25 1006.25
2000.5 1012.53
2099,5 2208,29

2099.75 2207.18

2100 2206.08 |

2, 3, 399, 400, 401]

I don’t have any explanation for the — small — difference in the population size compared with the
VENSIM values the end of the table appearing as result of the population-function.

I mentioned above that the ITERATES-command can be replaced by an equivalent program:

pop(n, dt, tab, i, p, t) =
Prog

p := 1000

t = 2000

tab := [[t, p]l]

i=1

Loop

If i >n

RETURN tab

p:=p + p-Cramp(t,0.04,0.01,2010,2060) -
ramp(t,0.015,0.012,2010,2030)) -dt

t :+ dt
tab := APPEND(tab, [[t, pl])
i+ 1

The pop-generated values are matching exactly with the VENSIM values as you can verify above!
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Finally it would make sense to treat the population development supported by a differential equation.
It needs only “translating” the equations (01, 02, 03, 04, and 17) given in the VENSIM-document.

% = p - (birth rate — death rate), p(t=2000)=1000

We use the self defined RAMP-function for birth rate and death rate and apply the Runge-Kutta
numerical method again.
(RK([p-Cramp(t, 0.04, 0.01, 2010, 2060) - ramp(t, 0.015, 0.012, 2010, 2030))1], [t, p],
[2000, 1000], 0.25, 401))
[1, 2, 3, 399, 400, 401]
2000 1000
2000.25 1006.26

2000.5 1012.57

Population
2099.5  2205.60
2099.75 2204.49
2100  2203.39 |
2000 2020 2040 2060 2080 2100

As you can see table and graph agree with the previously obtained results.

A slight change in the DERIVE program presented above gives the opportunity to add the diagrams of
births and deaths.

Population

VI

1 T

Deaths

2000 2020 2040 2060 2080 2100

Births and Deaths are multiplied by the scaling factor 80.

48



Population Dynamics with 7/-NspireCAS

/ i i . E
. —ay . Ferti
mmp[;r,ar,er,qv,qv]:=when\_r£a_1',ay,when _1'Ser,ay+&y L4 |,I_r—.t11',],€:}f” 8
) exr—ax
dv:=0.25 0.25
birthr{x):=ramp|x,2010,2060,0.04,0.01) Fertig
deathi{x):=ramplx,2010,2030,0.015,0.012 Fertig
ini_pop:=1000 1000

The Lists & Spreadsheet application delivers lists for births, deaths and population.

..time ibir‘ths ideaths ipopulation ibir‘ths_scal ideaths_scal Til
=births*80 =deaths*80
2000| 10.| 3.75 1000 800. 300.
2000.25 10.0625 3.77344 1006.25 805. 301.875
2000.5 10.1254 3.79702 1012.54 810.031 303.762
2000.75 10.1887 3.82075 1018.87 815.094 305.66
2001. 10.2524 3.84463 1025.24 820.188 307.571
2001.25 10.3164 3.86866 1031.64 825.314 309.493
2001.5 10.3809 3.89284 1038.09 830.473 311.427
2001.75 10.4458 3.91717 1044.58 835.663 313.374
2002. 10.5111 3.94165 1051.11 840.886 315.332
2002.25 10.5768 3.96629 1057.68 846.142 317.303
2002.5 10.6429 3.99108 1064.29 851.43 319.286

2002.75 10.7094 4.01602 1070.94 856.751 321.282
2003. 10.7763 4.04112 1077.63 862.106 323.29

2003.25 10.8437 4.06638 1084.37 867.494 325.31 L

=dI-birthr{al)-dx <[]

I multiplied Births and Deaths by 80 in order to represent all lists on the same axes which results in a

well known diagram.

2500 v

100

l: time,births_scal J
/ -
Deaths-80

(n'mepopu ?a.fion:]

Births-80

N

|
(Iime,dea.rhs_scai,l

5300

2110
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5 The Reservoir is flowing over!

We simulate the dynamics of a Reservoir. Its
RESERVOIR CAPACITY can be exceeded by a
constant NORMAL INFLOW and additionally
by an Inflow in form of a pulse (melting of
snow, heavy rains, ...). We assume that the
normal Outflow is proportional to the current
contents of the Reservoir with a NORMAL
OUTFLOW RATE. In case of overloading the
reservoir, the surplus results as Overflow
with an OVERFLOW RATE, which is greater
than the NORMAL OUTFLOW RATE.

Kaprun storage reservoir, Salzburg, Austria

The extra load in form of a pulse is described by the PULSE HEIGHT which starts at PULSE BEGIN with

a duration PULSE LENGTH.

It is no problem to set up the VENSIM stock and flow diagram. Later you will see how to describe the

PULSE-function by a short function. Take it now as it is.

Overloading a Reservoir

PULSE HEIGHT

PULSE BEGIN

PULSE LENGTH

iy

N
Inflow

NORMAL
INFLOW

CAPACITY

RESERVOlR/(!j

INIRESERVOIR
Reservoir ~ Dy
\/9"]%
NORMAL
OUTFLOW RATE
DX /O(verﬂow

OVERFLOW

RATE

Total outflow

The document comprises all data of the model (I changed the order):

(03)  INIRESERVOIR = 0.3

(05) NORMAL INFLOW = 0.25

(06) NORMAL OUTFLOW RATE =0.5
(09) OVERFLOW RATE = 10

50




(10)
(11
(12)
(14)
(02)

(07)
(08)

(13)
7)
(04)
(01)
(16)
(15)

PULSE BEGIN =5

PULSE HEIGHT =10
PULSE LENGTH = 0.2
RESERVOIR CAPACITY =1

Inflow = NORMAL INFLOW + PULSE HEIGHT * PULSE(PULSE BEGIN,
PULSE LENGTH)

Outflow = NORMAL OUTFLOW RATE * Reservoir

Overflow= IF THEN ELSE(Reservoir > RESERVOIR CAPACITY,
OVERFLOW RATE*(Reservoir - RESERVOIR CAPACITY), 0)

Reservoir = INTEG(+Inflow — Outflow — Overflow, INI RESERVOIR)
Total outflow = Outflow + Overflow

INITIAL TIME =0

FINAL TIME =20

TIME STEP = 0.02

SAVEPER = TIME STEP

We will inspect the diagram based on the proposed parameters:

Overloading

20

o o

Total outflow : reservoir

Inflow : reservoir
Reservorr : reservoir

10

Scaling: 0 < Reservoir < 2 and 0 < Inflow, Total outflow < 20

We can spread the exciting time span between days 4 and 6.
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Overloading

20

(=]

(=]

4.50 5 5.50 6 6.50
Time (days)

Total outflow : reservoir
Inflow : reservoir
Reservorir : reservoir

How to interpret this diagram?

The Reservoir fills slowly and reaches the equilibrium value of 0.5 units after approximately 4.5 days.
Then suddenly an additional inflow — the pulse — arrives which results quickly in an overflow. This
overflow is lasting until the RESERVOIR CAPACITY has increased down to 1 unit. Then it needs about
10 days to reach the normal state again.

Of course, the system depends mainly on the RESERVOIR CAPACITY and the NORMAL OUTFLOW
RATE. If both are sufficiently large then we will hardly face an overflow.

We simulate the process increasing the capacity to 2.5 units.

Overloading

20

4.50 5 5.50 6 6.50
Time (days)

Total outflow : reservoir 1
Inflow : reservoir 1
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Take care of the vertical scaling: now we have 0 < Reservoir < 4. The greater capacity removes the
peak of sudden inflow.

Modelling the behaviour of a reservoir we will investigate what is happening if soon after the first

pulse a second one will follow — the thunderstorm with heavy rains returns. We just add another
PULSE.

PULSE LENGTH Overloading a Reservoir
PULSE BEGIN with 2 Pulses

PULSE BEGIN2

PULSE LENGTH1

INIRESERVOIR

PULSE LENGTH2

o pay > Reservoir Z )

e \_juN
/ NORMAL
NORMAL INFLOW Boverfiow OUTFLOW RATE
OVERFLOW
RESERVOIR CAPACITY % RATE

Total outflow

PULSE HEIGHT shall remain the same for both pulses; the second pulse will start at 5.6 with a PULSE
LENGTH of 0.4 days. The Inflow-equation changes.

Inflow = NORMAL INFLOW + PULSE LENGTH * PULSE(PULSE BEGIN1, PULSE LENGTHI)

+ PULSE LENGTH * PULSE(PULSE BEGIN2, PULSE LENGTH?2)

Overloading a Reservoir with 2 Pulses

20

(=)

=]

4 4.50 5 5.50 6 6.50 7 7.50 8
Time(Days)

Total outflow : reservoir 2
Inflow : reservoir 2
Reservorr : reservorr 2

53



Here are the most interesting rows of the table for better comparison with the next realisations of the

model:

Time (Day) Total outflow Inflow Reservoir
0 0.15 0.25 0.3

0.02 0.151 0.25 0.3020
0.04 0.1519 0.25 0.3039
0.06 0.1529 0.25 0.3059
0.08 0.1539 0.25 0.3078
0.1 0.1549 0.25 0.3098

The first pulse arrives in the reservoir:

4.96 0.2417 0.25 0.4834
4.98 0.2418 0.25 0.4836
5 0.2418 10.25 0.4837
5.02 0.3419 10.25 0.6839
5.04 0.4410 10.25 0.8821
5.06 1.322 10.25 1.078

At time 5.6 the second pulse arrives and pours into the reservoir:

5.5 0.4995 0.25 0.9991
5.52 0.4970 0.25 0.9941
5.54 0.4946 0.25 0.9892
5.56 0.4921 0.25 0.9843
5.58 0.4897 0.25 0.9795
5.6 0.4873 10.25 0.9747
5.62 2.284 10.25 1.169

5.64 3.957 10.25 1.329

5.66 5.278 10.25 1.455

5.68 6.322 10.25 1.554

5.7 7.147 10.25 1.633

6.29999 0.5387 0.25 1.003

6.31999 0.4989 0.25 0.9979
6.33999 0.4964 0.25 0.9929
6.35999 0.4940 0.25 0.9880
6.37999 0.4915 0.25 0.9831
6.39999 0.4891 0.25 0.9782
19.9603 0.2502 0.25 0.5005
19.9803 0.2502 0.25 0.5005
20.0003 0.2502 0.25 0.5005

Now we have retruned to normal conditions since some time.



How the Model can look like with MS-Excel

For the first model we take the parameters from above (2 pulses).

A | B [ ¢ | b [ E | F | 6 | H | [ | J | K | L

| 3 |Data Time Pulse 1Pulse2 Pulses Inflow Outflow Total Outflow Overflow Reservoir
| 4 | 0 0 0 0 025 0,1500 0,1500 0 0,3000
| 5 |Ini Reservoir 0,3 0,02 0 0 0 025 0,510 0,1510 0 0,3020
| 6 | 004 0 0 0 025 01520 0 1520 0 0 3040
7 |Reservoir Cap. 1 ) }
5 | P Overloading with 2 Pulses
E Normal Inflow 0,25
110 2,5000 -
| 11 |Normal Outflow Rate, 0,6
1
E Overflow Rate 10 2,0000
= A
| 15 |Pulse Height 10 £ 1,5000
|16 z -
T Puise Begin i & I\| \
18 & 1,0000 -
| 13|Pulse Length 1 0,2 \
20,
| 21 |Pulse Begin 2 5,6 0,5000
22
23 |Pulse Length 2 0,4
E 0,0000 T T T |
| 25| Time Step 0,02 4 5 6 7 8
126 | Time (Days)
27
| 28 | 0,48 0 0 0 025 01714 0,1714 0 0,3429
29| 0,5 0 0 0 025 0,722 0,1722 0 0,3444
After 20 days it looks like the VENSIM model:

20 0 0 0 0.25 0.2502 0.2502 0 0.5005

Increasing the RESERVOIR CAPACITY up to 2.5 units the diagram changes:

4,0000 -

3,5000

Overloading with 2 Pulses

3,0000 -
2,5000 -

2,0000

Reservoir

1,5000 -

1,0000 -

\ ‘ Reservoir

0,5000

0,0000

Time (Days)
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The Pulses and DERIVE

Having been successful modelling the problem twice it should be easy to transfer the “performance”
of the reservoir to a DERIVE program. We predefine the PULSE-function.

pulse(m, b, d, x) = 10 -
Ifb<x<b+d
#1: m 5
0
-4 -2 2 4 6 & 10 12

#2: pulse(10, 5, 3)

-5

The simulation program is very short:

reservoir(normout_r, normin, res, rescap, pl, stpl, lepl, p2, stp2, Tlep2,
ovfl_r, t_start, t_end, dt, tab, t, totalin, ovfl, totalout) :=
Prog

tab = []

t = t_start

Loop
If t > t_end

RETURN tab

totalin := normin + pulse(pl, stpl, lepl, t) + pulse(p2, stp2, lep2, t)
ovfl := IF(res > rescap, ovfl_r-(res - rescap), 0)
totalout := normout_r-res + ovfl
tab := APPEND(tab, [[t, totalout, totalin, res]])
res := res + dt-(totalin - totalout)
t :+ dt

I present some values of the table; please compare with the respective VENSIM and MS-Excel values:
reservoir(0.5, 0.25, 0.3, 1, 10, 5, 0.2, 10, 5.6, 0.4, 10, 0, 0.1, 0.02)

0 0.15 0.25 0.3
0.02 0.151 0.25 0.302
0.04 0.1519 0.25 0.3039
0.06 0.1529 0.25 0.3059

0.08 0.1539 0.25 0.3078

0.1 0.1549 0.25 0.3098 |

(reservoir(0.5, 0.25, 0.3, 1, 10, 5, 0.2, 10, 5.6, 0.4, 10, 0, 20, 0.02))
[249, ..., 254]

[ 4.96 0.2417 0.25 0.4834 ]
4.98 0.2418 0.25 0.4836
5 0.2413 10.25 0.4837
5.02 0.3419 10.25 0.6839

5.04 0.4410 10.25 0.8821

| 5.06  1.322 10.25 1.078 |
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This looks pretty satisfying. I leave the same y-scaling for all values.

(reservoir_ext(0.5, 0.25, 0.3, 1, 10, 5, 0.2, 10, 5.6, 0.4, 10, 0, 10, 0.02))..[1, 4]
(reservoir_ext(0.5, 0.25, 0.3, 1, 10, 5, 0.2, 10, 5.6, 0.4, 10, 0, 10, 0.02))5.[1, 2]
(reservoir_ext(0.5, 0.25, 0.3, 1, 10, 5, 0.2, 10, 5.6, 0.4, 10, 0, 10, 0.02))3.[1, 3]
y = 15

In order to get a better orientation I include the horizontal line y = 15.

.15 Units and 15 Units/Day

Total Inflow

Total Outflow

~ Reservoir

4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6 6.1 6.2 6.3 6.4

Again | am regretting that it is not able to introduce sliders for the various parameters. Using a little
trick we can produce the same diagram as with VENSIM (different scalings).

Reservoir

12 12

Tatal !Z.lutﬂt;:u‘.;".r

@Jtal Infloﬂ

+

4.2 4/4 4.6 4.3 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7
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Bossel poses the task to investigate the influence of RESERVOIR CAPACITY on avoiding peaks in the

reservoir Outflow. A slider would be very helpful.

We could realize this with GeoGebra but at the moment this system is not stable enough and calcula-

tion times are too long for handling this amount of data — up to a total ,,hang up*. We can achieve this
with TI-Nspire with little effort.

Modeling with sliders and 7/-NspireCAS

pufsd‘h,b,I,_f');:when(bg_rsbﬂyh,o 4 .. time B c D E B G H Wreserv... Finflow .tot_outﬂ. -
Done
h_1:=10:b_I1-=5:1 1:=0.2 0.2 0 0 0 0 0.25 0.15 0.15 0 0.3 0.025 0.015
b 2-10b 22561 2-0.4 0 0.02 © 0 0 0.25 0.151  0.151 0 0.302 0.025 0.0151
n;pmbz:=0.725:norm;m_r:=0.5 05 0.04 © 0 0 0.25 0.15199 0.15199 0 0.30388  0.0250.01519..
P pTS— s 0.06 © 0 0 0.25 0.15297 0.15297 0 0.30594  0.0250.01529..
0.08 0 0 0 0.25 0.15394 0.15394 00.30788..  0.025 0.01539..
dn=0.02 0.02 0.1 0 0 0 0.250.15490..0.15490.. 00.30980.. 0.025 0.01549
012 o0 0 0 0.250.15585..0.15585... 00.31170..  0.0250.01558..
014 © 0 0 0.250.15679..0.15679.. 00.31358..  0.025 0.01567..
0.16 0 0 0 0.250.15772..0.15772.. 00.31545..  0.0250.01577...
018 © 0 0 0.250.15864..0.15864.. 00.31729..  0.025 0.01586..
02 0 0 0 0.250.15956..0.15956.. 00.31912..  0.025 0.01595..
022 0 0 0 0.250.16046..0.16046.. 00.32093..  0.0250.01604..
024 © 0 0 0.250.16136..0.16136.. 00.32272..  0.0250.01613..
0.26 0 0 0 0.250.16224..0.16224.. 00.32449..  0.0250.01622...
0.28 0 0 0 0.250.16312..0.16312.. 00.32625..  0.0250.01631..
03 0 0 0 0.250.16399..0.16399.. 00.32798..  0.0250.01639..
032 0 0 0 0.250.16485..0.16485.. 00.32970..  0.0250.01648..
034 0 0 0 0.250.16570..0.16570.. 00.33141..  0.0250.01657..
036 0 0 0 0.250.16654..0.16654.. 00.33309..  0.025 0.01665..
038 0 0 0 0.250.16738..0.16738.. 00.33476..  0.025 0.01673..
04 0 0 0 0.250.16820..0.16820.. 00.33641..  0.0250.01682..
0.42 0 0 0 0.250.16902..0.16902.. 00.33805..  0.025 0.01690..
0.44 © 0 0 0.250.16983..0.16983.. 00.33967..  0.025 0.01698..
24 046 o 0 0 0.250.17063..0.17063.. 00.34127..  0.0250.01706.. ||
~
5/99 —pulselh_1,b_1,1_1,a7) T[ﬂ
3.11 y
Inflow & Outflow are divided by 10
[rﬁize,rmmvoﬁ‘)
res_cap =2,
1. 4,
[ . } (time, tat_on{ﬂ)
0.2 \time, inflow)
X
0.99 0.5 10.42
t:— time
@ ST |y reservoir @

All calculations are performed in the spreadsheet. It is easy to represent the lists in the diagram.

It would be no problem to introduce more sliders for other parameters, too.
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6 Density dependent Growth: Michaelis-Menten-Kinetics

A growth function which is similar to the logis-
tic growth is based on the Michaelis-Menten-
Kinetics.

Leonor Michaelis, 1875 — 1949, German biochemist
and Maud Leonora Menten, 1879 — 1960, Canadian
medical scientist

This function is especially suitable for describing saturation processes in chemistry and biochemistry.
Reaction velocity v depends among others on the concentration of the respective stock and can be
described by the equation

S

S+c

= Vinax

S is the respective concentration of the substrate. ¢ is the Michaelis-Menten-Constant or the Dissocia-
tion Constant or Half Saturation Constant. The latter name is derived by the fact that for S = ¢ the out-
come is half of the saturation effect.

Stock
Whereas in logistic growth the increase of stock is described by 7 - Stock - I—L' , in this
Capacity
Stock

with  being the MAXIMUM
Stock + ¢

case we have for the increase the formula: » - Stock -(1 —

GROWTH RATE. We introduce a HARVEST RATE / for considering the stock decrease.

S
This leads to the differential equation for this special form of growth: S'=7-S -[1 3 j— h-S.
+c

The VENSIM-stock and flow diagram is not very complicated.

Message from Vensim @

\1‘) Units are &. O, K.

et Growth

NI STOCK

. e - Stock o
Gromﬁu \__/'H'arvest\
LA IMLIN HARVEST
HALF SATURATION RATE
GROWTH RATE COMSTANT
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The model document follows (here in alphabetical order). Something is new: I entered the dimensions

of the variables. Then I can induce VENSIM to perform a dimension analysis checking consistency of

all quantities. Here the answer is: Units are O.K. 1 can also check the model as a whole and I receive

as answer: Net Growth is not used in the model. This is ok, because Net Growth is only an intermedi-

ate value which can be used for plotting or reading off in the table.

(01)

(02)

(03)

(04)

(05)

(06)

07)

(08)

(09)

(10)

(11

(12)

FINAL TIME = 50
Units: Day
The final time for the simulation.

Growth = GROWTH RATE * Stock * (1 — Stock/(HALF SATURATION CONSTANT +
Stock))
Units: M/Day

MAXIMUM GROWTH RATE =1
Units: 1/Day

HALF SATURATION CONSTANT =1
Units: M

Harvest = HARVEST RATE * Stock
Units: M/Day

HARVEST RATE =0.5
Units: 1/Day

INI STOCK = 0.02
Units: M

INITIAL TIME =0
Units: Day
The initial time for the simulation.

Net Growth = Growth — Harvest
Units: M/day

SAVEPER = TIME STEP
Units: Day [0,7]
The frequency with which output is stored.

Stock= INTEG (Growth — Harvest, INI STOCK)
Units: M

TIME STEP =0.02

Units: Day [0,?]
The time step for the simulation.
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Michaelis-Menten-Growth

1 M
1 M/Day
05 M
0.5 M/Day
0 M
0 M/Day
0 5 10 15 20 25 30 35 40
Time(Days)
Stock : M
Growth : M/Day
Harvest : M/Day

Bossel discusses two special cases:

(1) What will happen if there is no Harvest (?

Michaelis-Menten-Growth

50 M
1 M/Day
25 M
0.5 M/Day
0 M
0 M/Day |
0 5 10 15 20 25 30 35 40
Time(Days)
Stock : M
Growth : M/Day
Harvest : M/Day

No harvest (HARVEST RATE = 0)




(2) What will happen if the HARVEST RATE is (too) high? (e.g. »=0.5, A= 0.9 and INI STOCK = 4)

As the next diagram is showing very clearly — and not surprisingly — the stock is breaking down very
fast.

25 M
0.5 M/Day

Michaelis-Menten-Growth

5 M
1 M/Day

oo
<=

0 2.5 5 7.5 10 12.5 15 17.5 20
Time(Days)

Stock : M
Growth : M/Day
Harvest : M/Day

Bossel suggests further investigations connected with this model:

Investigate the behaviour of the system for

(a)
(b)
(©)

Sliders would be ideal for all these investigations. But various Stock-curves on the same axes for a

various GROWTH RATES r with constant HARVEST RATE 4 > 0,
various HARVEST RATES £ with constant GROWTH RATE r,

various HALF SATURATION CONSTANTS c.

series of parameters are also very convincing. For this is the VECTOR-command of DERIVE an ex-
cellent tool.
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Treating the model with DERIVE as a differential equation

We are using the CAS to find the equilibrium s
_ : SOLVE|S = S + r-S-[1 - - hs, s
value (= saturation value). [ r [ - ] ]
S*:C.(r_h) c.(r — h)
h S=————v5=0

h

For the numerical solution of the DE and subsequently for the graphic representation of the integral
curve(s) we use again the Runge-Kutta-method:
S

n
MMG(r, h, c, dt, n) := RK[lr-S-[l = —] = h-S], [t, s], [0, dt], dt, —J
S +c dt
VECTOR(MMG(r, 0.5, 1, 0.05, 30), r, 0, 1, 0.1)

The next graph shows the Stock with variable GROWTH RATES » with 0 <7 <1 (A =0.5and ¢ = 1). The
left graph gives details for the first years.

Now I will vary the HARVEST RATE 4 between 0 and 1 (r=c=1):

One investigation is still missing: what is the influence of the constant ¢ with0 <¢ <2 (r=1 and
h = 0.5) on the Stock amount? See the respective VECTOR-commands and the plots.
VECTOR(MMG(1, h, 1, 0.05, 30), h, 0, 1, 0.1)

VECTOR(MMG(1, 0.5, ¢, 0.05, 30), c, 0, 2, 0.2)
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Just for fun I will grab one more tool of my tool box. I will try solving the differential equation ana-
lytically launching WIRIS™.

< || Edit | Operations l Symbols l.&nalysis l hatriz lLIn'rts l Combinatorics lGeu:umetry lGreek l

< O {O o 5 0% 4§ E 0o | (O plot  represent | egustion s
m ol oo 0, 40 :i; n O] | platzd system =o
solve(y'(x)=r-y(x) (1= =) =h y(x))

. {{_ In(y(x)) . r-ln(h-y(x)+ (h-sc-r-sc)) =c+x}}
h-r h?=h-r
(x) = __yx) e, _
solve(y'(x)=1-y(x)- (1 v(x)+1 1-0.5-y(x),y(0)=0.02)

=> {{4.-In(-6.-y(x)+6.)-2.-In(y(x)) + (x—14.91) =0} }
mmg :=4.-In(-6.-y(x)+6.)-2.-In(y(x)) + (x-14.91) =0;
T1=plotter(point(20,1),45,3);

plot(T1,mmag)

=> plotter1

c is the integration constant

It seems to work, so I will repeat this experiment with DERIVE. My hope is that I then could be able
to work with my precious sliders.

S
DSOLVEl_GEN[h-S - r‘-S-[l - ], 1, t, S5, kJ
S +cC
r«LN(S-h + c:(h - r)) LN(S)
+ -t =-k
h-Cth - r) r—h

This is not so bad, we have the general solution in implicit form.

We substitute S(z = 0) = i (for initial value) in order to obtain immediately the value for the integration
constant k.
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-

-LN(i-h + c-Ch - r)) LNCi)

+ -0=-k
h-Ch - r) r-nh
r-LN(c-Ch — r) + h-1i) LN(iD
+ = —k
h-Ch — r) r—h
r«LN(5-h + c-(h — r)) LN(S) r«LN(c-(h — r) + h-1) LN(3)
+ -t= +
h-Cth - r) r —h h-Ch - r) r—h
r-LN(y-h + c-Ch - r)) LNCy) r-LN(c-(h = r) + h-1) LN(C3)
+ - X = B
h-(th - r) r —h h-Cth — r) r—h
c.(r - h)
h

The next to last expression is the solution (in implicit form) and the last expression is the equilibrium.

Now I can introduce sliders for 7, ¢, # and i and plot the solution curve together with the equlibrium
line.

=115 [x]
!

0.00 ] 2.00

i = 0.50 [x] 11
[
non — | 5.00
0.00 2 2.00 05
3

0.00 2 5.00

=25 =20 -15 -10 -5 5 10 15 20 25 20 35 40

We can do all investigations and the effort — which was not too great — was indeed worthwhile!

This is really great. Then I came across some strange results. I tried to find an explicit solution:

[ r-LN(Cy-h + ¢-(h - r)) LNCy) r-LN(c-Ch - r) + h-1) LNCi) ]
SOLVE + - X = + ,

h-Ch — r) r —h h-Ch = r) r—h

2

x.Ch /r — h)

e (c:Cth = r) + h-1) c.(r — h)
y = + AY =1

h h

I received a result — but the graph of this function does not match with the integration curve from
above. | went on and did some manual manipulations to obtain a nicer form of the implicit solution
and solved again for y. There was again a pretty result — but the graph didn’t fit!
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2
c:h —c.r+h.y Y (1i)h x:(h - h.r)
SOLVE [ ] [—] = e LY
c:h - c.r + h.i y
- h.x
e (c-Ch = r) + h-i) c-(r - h) - h-x
y = + AY =1-e
h h

I substituted the parameter values given in the second model and solved again for y. There were two
solutions and — interestingly enough — one of them was the right curve. I don’t have an explanation for
so many contradictions. Do you have one? Then please let me know.

= e

2
[ 1.-0.5 - 1.1 + 0.5-y ]1[0.02 ]0.5 x-(0.5 -0.5.1)

1.0,5 - 1.1 + 0.5-0.02 y
5.J2-(1 - y)-SIGN(y) - x/4
= e
49.Jy
5./2.(1 - y)-SIGN(y) - x/4
SOLVE = e ,
49y
P x/2
. (49../(200.e + 2401) - 100.e — 2401)
100
- x/2 x/2 x/2
e . (49../(200.e + 2401) + 100.e + 2401)
Ay £0
100

Additional comment: Only the special combinations of 7 and /4 lead to an explicit form.

One can find very fine descriptions of the Michaelis-Menten-Kinetics among others in:
http://www.isitech.com/fileadmin/pb/pdf-Dateien/Michaelis_Menten Kinetik.pdf (German)
http://www.ncbi.nlm.nih.gov/books/NBK22430/
http://depts.washington.edu/wmatkins/kinetics/michaelis-menten.html

http://www.cdnmedhall.org/dr-maud-menten

It is very interesting that the German paper contains simulations performed with VENSIM.

[8] http://wiris.schule.at/de _en/index.html
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7 A Brusselator? Never heard!

Yeah, what is this, a Brusselator? As I never came across this term I did
some Internet research.

I found in [9] that this is a ,,simple simulation of a chemical reaction
with oscillating dynamics®. This made me much wiser?

You can find a very fine description in [10].

Finally I found out the orgin of the name Brusselator:

The Brusselator is a theoretical model for a type of
autocatalytic reaction. The Brusselator model was pro-
posed by llya Prigogine and his collaborators at the
Free University of Brussels. It is a portmanteau of
Brussels and oscillator.

(Wikipedia)

The Brusselator is described by a system of differential equations:
x=A-(B+1)-x+x>-y
j} = B . x —_ x2 . y
A and B are given constant concentrations and x and y are intermediate products. Their behaviour

during the chemical reaction is investigated and simulated.

I will do it here from the other direction and will start solving the DE-system numerically.

The WIRIS-solution

I
| f=a- (b+1)-x+x2-y
| g=b-x-x2-y

ﬂ a=1:b=3;x0=1;y0=4

plotter(point(12,2),26,8); E
brut :=rkd4(f,g,0,x0,y0,0.004,6000);
list_to_points(bru1,1,3,3,blue) = plotter1
plotter(point(2,2),5,6);

brut :=rkd4(f,g,0,x0,y0,0.004,6000);
list_to_points(bru1,2,3,3,red) = plottert

[9] http://mscerts.programming4.us/de/912086.aspx
[10] http://www.bibliotecapleyades.net/archivos_pdf/brusselator.pdf
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Behind the first — unopened — “library* is hidden my program for the Runge-Kutta-method.
In WIRIS is this algorithm — in contrary to DERIVE — not implemented.

The second “library* contains both first derivatives, the third one the parameter values which are used
by Bossel as initial values. The contents of the libraries can be used globally in the whole WIRIS-
session — and not only in the single paragraphs which are kept together within one (left) bracket [.

I was able to calculate and plot 6000 points using a step width of 0.004. When asking for more points
no plot is appearing. Later we will try whether DERIVE has more power?

The first plot shows how y develops durting the first 24 time units (seconds).

The next plot gives the phase diagram for the x- and y-values.
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Treatment with DERIVE and then with TI-NspireCAS

I am using my own Runge-Kutta-routine rk4 and let plot the z-y-diagram for various B-values.
(My rk4 works faster than RK.)

#2: [2:=1, b=l =_:=1, y_:=4]

#3: (rk4([a - (b + 1) + xz-y, bex — xz-y], [t, =, w1, [0, =_, w_]1, 0.00, 5000035.[1, 3]
#4: bz 2

#5: bz 3

#5: bz 4

#7: bz 4.1

2

2
#E: (rk4([a — (b + 13 + % »y, b — x -y], [t, =, w], [0, =_, ¥_]1, 0.001, 10000373,1[1, 3]

Expression #3 is high lighted and plotted (B = 1), then I define B = 2, plot #3 again, etc. [ use a step
width of 0.01. Bossel works with VENSIM taking a step width 0.002.

r W f i L.’” :’r h =1

et 1n Sekunden

5 10 15 20 25 30 35 40 45 50 55

In expression #8 I took step width 0.001, too in order to compare the accuracy. As one can clearly see
the bold line (step width 2 =0.001) is more or less identical with the 2 = 0.01 generated function
graph.

The VENSIM-diagrams (later in this chapter) look quite the same.

We can see that the curve changes from a damped oscillation to very pronounced oscillations.
For B =4 we recognize that y = 4 constant.
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Leaving all parameters the same then we plot the respective phase diagrams:

#9: b1
[ ‘ %)
#10: (rkd4Cla = (b + 1)-x + x -y, b-x = x -yl, [t, %, y¥], [0, x_, y_], 0.01, 50003)11[2, 3]
#1: b= 2
#12: b= 3
#13: b= 4

#4: b= 4.1

For accentuating the point (1,4) — phase diagram for B = 4 — I plotted this point in white colour.

Bossel produces with VENSIM a little bit complicated so called “state pictures* (in German: ,,Zu-
standsbilder = families of phase diagrams). The initial values for x and y are running through an in-
terval.

We can do this with DERIVE using a nested VECTOR-command for (0.4 < x, y <4). Of course, this
needs some calculation time but the plots are really convincing.

#15: b = 1.5

2

2
#16: VECTOR(VECTOR((rk4([a - (b + 1)-x +x -y, b-x —x -y], [t, x, v]1, [0, u, v], 0.05,

1000))y4[2, 3], u, 0.4, 4, 0.4), v, 0.4, 4, 0.4)

#17: [1, 1.5]
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The points are represented “not connected”.

The equilibrium point is easy to find. The derivatives are set to zero and the resulting system must be
solved for x and y:

0=A—(B+1)-x+x"-y
0=B-x—x"-y

B
Even without using a CAS the equilibrium point results as (A,Zj. Following Bossel it can be shown

easily that this point for B < A” + 1 appears as a stable whirl, which can be seen very clearly in the
state picture from above. The equlilibrium point (1, 1.5) is the black point in the center of the whirl.
The next two pictures are zooming into the interior of the whirl with points connected in the right
graph displaying the phase diagram curves.

For B> A> + 1 we have a limit cycle, which contains an unstable equilibrium point in its interior,
which is the point (1, 2.5) for the choice 4 =1 and B = 2.5.

#18: b = 2.5

2 2
Y b-x - x 'Y]. [tl Xy y]l [01 u, V]I 0051

#19: VECTOR(VECTOR((rk4([a (b + 1% + x
1000))11[2, 31, u, 0.2, 4, 0.2), v, 0.2, 4, 0.2)
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0.2 0.4 06 0.8 1 1.2 1.4 16 1.8 2 2.2 24 2.6

Unstable Equilibrium point in (1,2.5)

There is no denying that these pictures have some esthetic charm.
Later we will see that they can be produced with VENSIM, too. However, this needs some efforts.

Of course, we would benefit of the application of sliders because then it would be very comfortable to

study the influence of the various parameters.

Sliders with TI-NspireCAS:

2]
=
5]

.. B Etime .x_val... .y_val... &

dt 0.05 0 1. 4.
0.05 1.05 3.95

0.1 1.10774 3.88976

0.15 1.17485 3.81726

0.2 1.25332 3.73005

2
3
H
s
. 0.25 1.34562 3.62508
2
8
9
10
n

0.3 1.45469 3.49873
0.35 1.58394 3.34675
0.4 1.73698 3.16451
0.45 1.91697 2.94767
0.5 2.12518 2.69362

0.55 2.35841\ 2.40413

A . N e . - |

¥ 3l

=d1+$b$1'{a—{b+1]'d1+d12'€1_+ 4

It does not need much effort to produce the table in the spreadsheet. Sliders for a, b, x0 and y0 in the
Geometry application have been installed previously.
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The first diagram shows how x and y develop within the first 50 seconds using the parameters chosen

by Bossel in System Zoo.
979 T ¥
a=1
0. 4.
b=3
aammol
x0=1. y0=4
4o 4m
- 1 1 (r.‘me‘_\;mf.'res:l
0. 0.-
I
f |
L
0.5 _
X
.23 I 2 (n’me,_\; 1'(111193:] 50.94
® -2.59
The scatter plots are reacting immediately on every change of the slider settings.
979 1 v
a=1.
0 4.
b=15
0. 4.
x0=2.3 y0 =24
4 4y
] i
0.—[ 0.[
|
[ﬂniem_rahms)
0.5 [:ﬁme,_\; 1‘(1?1105) .
5 2 50,94
® -2.59
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See the phase diagram for the “System Zoo-parameters* followed by a diagram based on another an-

other choice of parameters.

6.07 y
a=1
0. 4.
b=3
0. .
x0 =1
4
o
[.\; 1'(1]1!6’311’7\‘(!1!1{’8:]
0.5
v
-2.06 0.5 9.89
& -1.86
4.3 y

a=1

0. 4.

b=1.8

0. 4.

x0=8 y0=32

4.~ 4 H

0.- 1.-

[jx_ '.‘(1]1[(’S=V_I‘(1IU{’S:]
0.2 .
-1.46 0.2 7.01
® -1.32
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Thanks a private communication with Philippe Fortin I was able to produce another form of represen-
tation. We used a program rk4syst (Runge-Kutta) and instead of changing the initial values by sliders
we can drag the initial point in the plane and additionally plot the direction field of DE system.

B c D Bl i[y1 = H =
=rkdsyst(x0,y0,tmii =left(d[],dim(c =right(d[].dir

1.33621 initial value of x, at t=tmin 1.52973 1.52973 3.81253 0
4.02749 initial value of y, at t=tmin 1.78349 1.78349 3.52623 0.05
-0.5 windows settings 2.11425 2.11425 3.14838 0.1
10 windows settings 2.52714 2.52714 2.66977 0.15
-0.5 windows settings 2.98844 2.98844 2.12062 0.2
5 windows settings 3.40729 3.40729 1.59146 0.25
0.5 first x—tickmark 3.68513 3.68513 1.1856 0.3
0.5 first y—tickmark 3.7971 3.7971 0.935935 0.35
800 number of computed points b... 3.78623 3.78623 0.806803 0.4
3.7055 3.7055 0.750031 0.45
0 3.59071 3.59071 0.732314 0.5
40 3.46148 3.46148  0.735207 0.55
3.3277 3.3277 0.749245 0.6
0.3 control the length 3.19427 3.19427 0.769632 0.65
of vectors 3.06358 3.06358 0.793899 0.7
2.93674 2.93674 0.82074 0.75
2.81429 2.81429 0.849436 0.8
2.6964 2.6964 0.879581 0.85
2.58308 2.58308 0.910933 0.9

2.47425 2.47425  0.943341 0.95 |:5

&~
£

s
s
I's
I's
s
¥
"3
¥
¥
¥
&
¥

N N Ny N N N N N N N N N

> VNN N Y Y Y Y Y Y Yy
X LN w ® = LU X

051> ; (2, 1y1) I S 2 TS TR VA VI VIR

N, S SR Now v ow o o ow w0, ow v oy, v oW ow, oy, X
0.5 [ 0.5 10
i
0.5 L L L3 w X LY LY i x L LY L L3 L LY ® LY L L

S ( 2 2 Done a

Define fx yl=a—{b+ 1.‘.|-x+,\"'-y:Deﬁne gl:,ray.]:b-x—x"-_y |:|

~
‘ 1/99|

In another Geometry window we could see the time graphs.
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But finally we will work with Vensim PLE, too.

The model is very simple and so it is done quickly. (Production of the “state pictures* is a little bit

tricky!)

The Brusselator with Vensim PLE

YO

(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11
(12)

A=1

B=3

dXdt=A-B+1) * X+X * X *Y
dYdt=B*X-X*X=*Y
FINAL TIME = 50
INITIAL TIME =0
SAVEPER =0.1

TIME STEP = 0.05
X=INTEG(dXdt, X0)
X0=1

Y = INTEG(dYdt, YO0)
Y0=4
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B=3
6
4.5
3
1.5
0
-5 0 5 10 15 20 25 30 35 40 45 50

Time (Second)

B=3

Bossel uses the Euler-method with an increment of 0.001 (diagram above). I increased the step width
up to 0.05 and did not recognize any change in the graph. So my simplification in the T/-Nspire-
Version is now justified more or less.

The next diagram shows the comparison for various values for B.

Brusselator variable B
8
5
VA ; JAWAVA RN/4
2
LA
/ v
-1
-5 0 5 10 15 20 25 30 35 40 45 50 55
Time (Second)
B=1 B=4
B=2 B=4.1
B=3
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See on the right hand side the phase dia-
grams.
8
Applying a trick (an additional module)
Bossel makes possible a double loop for the 6
x- and y-values for a grid of 10 by 10 initial
conditions for x and y. 4
I cannot explain this now but invite you 2
studying System Zoo 1.
0
0 1 2 3 4 5 6
X
B=1 B =4
B=2 B=4.1
B=3

You should have seen a plot very similar to the following one (but in red) earlier!

Brusselator
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8 Bistable Oscillator

Prior to treating the “bistable oscillator, I will
explain the linear oscillator very shortly because
it is the base concept of the oscillator.

The general form of the linear oscillator is de-
scribed by the system of differential equations
X=ax+by
y=cx+dy

A bistable oscillator can look like this

A well kown case of this linear oscillator is the spring equation:
xX=y
y=—k-x

For the non physics — like me: x is the excursion, y is the velocity and £ is the spring constant. We can
consider a damping parameter d. Then the respective system reads:

x=y
y=—k-x—d-y
Introducing additionally a non linear coupling we obtain e.g.
x=b-y
y=x-x'-d-y

with a coupling parameter b and a damping parameter d. And this is our bistable oscillator. Its name
will explain itself later.

I start with the VENSIM PLE model and a very simple designation of the variables.

Bistable Oscillator

y X X

S

The following graph shows the behaviour of the excursion X and veleocity Y for the first 10 seconds
with an initial velocity Y0 = 50.
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Bistable Oscillator

60

-60
-10

3 4 5 6 7 8 9 10
Time (Second)

The describing document is very short, of course:

()
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
)
(12)

b=1

d=1

dx =b*y

dy =x —x"3 —d*y
FINAL TIME = 20
INITIAL TIME =0
SAVEPER = TIME STEP
TIME STEP =0.01
x = INTEG(dx,x0)
x0=0

y = INTEG(dy,y0)
y0 =50

We take a look on the phase diagram. What do you think about the end behaviour?

bist. Osc. Phase Diagram

50

25
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Inspecting the table for this diagram our impression is increased that there is an equilibrium point at
(x=0,y=-1).

=df & B T | > |
Time (Second) X Y ~
197804 -0.9992 -0.0025

197904 -0.9992 -0.0025

198004 -0.9992 -0.0025

19.8104 -0.9993 -0.0025

19.8204 -0.9993 -0.0024 »
¢ »

Analytical search for a possible equlibrium point is not difficult. We solve the system for x and y.
0=b-y
O=x—-x"-d-y

And we obtain three solutions: x; = 0, x, = 1 und x3 = -1. All y-coordinates are 0.

The system oscillates dependent on the initial velocity to (+1,0) or (-1,0). This is easy to see by run-
ning the simulation for a sequence of y-values and collecting all phase diagrams in one plot.

bist. Oscillator Phases
12
-10
-4 -3 -2 -1 0 1 2 3 4 5 6
X
y : bist12 y : bist06
y : bist10 y : bist04
y : bist08

Later I will show the global behaviour for -2.50 <x <2.50 und -2.50 <y <2.50 working with DERIVE
and using its VECTOR-command.

Speaking about DERIVE we will take a turn to this CAS and we will try reproducing this not too diffi-
cult simulation.
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The Bistable Oscillator with DERIVE

Five DERIVE-expressions lead to perfect graphs:

3
- d'y]| [tl Xy Y]. [Ul x0, y[]]l dtl n)

bist_osc(b, d, x0, y0, dt, n) := RK([b-y, X - X
(bist_osc(l, 1, 0, 50, 0.02, 1000))y44[1, 3]
(bist_osc(l, 1, 0, 50, 0.02, 1000))y44[1, 2]
VECTOR(VECTOR((bist_osc(1, 1, x0, y0, 0.02, 500))y14[2, 3], x0, -2.5, 2.5, 0.5), y0, -2.5, 2.5, 0.5)

VECTOR(VECTOR((bist_osc(l, 1, x0, y0, 0.05, 200))y4[2, 3], x0, -2.5, 2.5, 0.5), y0, -2.5, 2.5, 0.5)

50
The first expression defines a func-
tion for numerical solving the DE- 0
system. Expressions #2 and #3 give 0
the time-graphs of X and Y (same
colours as in the VENSIM- ol
treatment).

The next two expressions produce
the “state pictures™ presenting a
family of phase diagrams.

11 12

One can recognize very clear the three equilibrium points: stable whirls at (£ 1,0) and at (0,0) an in-

stable saddle. Of course, one could experiment changing both parameters » and d. We will do this now

working with sliders.
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The GeoGebra-model

I didn’t use GeoGebra for a while in this text. However, this dynamic system is so simple that it can
be modelled with GeoGebra (and its spreadsheet) without facing any problems.

I define sliders for b, d and YO0. .- bistable oscillator.ggb
Point INI is given by variable coordi- File Edit “iew Perspectives Options Tools Window
nates (0, Y0). ; 3
( ) e AV /./V ‘”"1"_; I::‘V ®7 IQV &V
Algebra B |Graphics
= Free Ohjects
I produce the respective lists in the 3 Y0=10
spreadsheet according to the formulae """ Ja=07 a=07
as you can see below. @ d=06
...... D dt=0.05 d=06
- Dependent Objects ——
. J|N|=I:°,1°] Y0 =10
In order to obtain the table I fill the cells in the first two rows as follows:
Al: 0 time
D1: 0 x0 (remains constant Q)
El: YO Initial value for y (variable by a slider)
F1: (DLED) first point of the phase diagram
Gl: (ALD1 first point of the time-x-diagram
H1: (ALED first point of the time-y-diagram
A2: A+dt
B2: dt*b=*El increase of x
C2: dt* (—d * E1 + D1 — D173) increase of y
D2: DI +B2 next value of x
E2: El+C2 next value of y
F2: (D2,E2)
G2: (A2,D2)
H2:  (A2,E2)
12: Segment(F1,F2)
This second row is copied at least down to row 201.
Spreadshest =
£ | B | ¢ | o | E | F | 6 | H | |
1 0 0 100 (0, 10) (0,07 (0,10
2 0.05 0.35 -0.3 0.35 97035, (005 (005, 0461
3 0.1 034 0276 0.69 Q424 (069, (01,0 (01,49 0437
4 015 033 0265 1.019 Q16 (1019 (015, 0 (015, 0423
3] 0.2 0321 0277 1.34 8883 134, (02 1. (028 0424
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Next two diagrams give the states of x and y for different parameter values. The “bistability” can easi-

ly be observed. The right plot is consisting of the segments between the points only (column I).

You can see below the time-diagrams for two different parameter settings. The ¢-x-diagram has its

initial point in the origin.

204

204

With MS-Excel and TI-Nspire one can work alike. Installing the sliders in Excel needs more efforts.
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How the oscillator becomes chaotic:
If the oscillator — its behaviour has been pretty predictable so far — will be excited from outside by
another periodic oscillation it will react in varied ways which can finally end in chaos.
The differential equations system is modified:
x=b-y
y=x-x-d-y+q-cosot

The recent GeoGebra version cannot work properly for a larger number of rows in the spreadsheet
(>200 rows). Accepting extended calculation times one can obtain nice diagrams. (Cell C2 must be
modified according to the second DE including ¢ and w; additional sliders are to be introduced.)

124
q=03
h=1 —————
[P — 10 q=17
w=1 b=1 ol JE— -

= —o ———————
d=03 w=23
-—

8 d=03 — %
Y0 =1 - 64
-—

5 Y0 =1

Sliders with TI-NSpireCAS

The spreadsheet is structured like in GeoGebra. Step width is predefined as df = 0.05.

267 r
b-1.00 q=.30
0. 3 0. 3
d= 15 w =110
I e s ad
0. 20 B X-Values in green
yO=1.00
T Y-Values in bine
0. 20.

l,f’"\/‘

vex_valuss &

vetime
& 52

The time-diagrams for xand y for the first 50 time units.



The phase diagram looks quite interesting:

X x_val.uesf
@ S

v-y_values

The representation becomes really attractive when animating any — does not matter which one — slider.

Then an exciting “movie” is running presenting fast changing diagrams.

Static Diagrams with DERIVE

In DERIVE we use again Runge-Kutta for solving the differential equation system — but we must do
without sliders. At the other hand we benefit of taking a small step width d¢ = 0.01 with a reasonable

calculation time (~ 45 seconds) and receiving 10000 points which can be plotted.

CRKC[b-y.
[b:i=1, d
[b:=1, d

—dwy + % — x
= 0,25, w0 =
= 0,25, w0 =

3

0.3, w

1.7, w

+ q-COS{w-t}}. [t, =, v], [0, 0, 0], ©0.001, 10000034402, 3]

1]

2.3]

Phase diagrams for the parameter settings given above.

(One can get an idea of the two equilibrium points, but they get lost after a short while.)
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9 Stock-keeping — with random numbers

Modelling with random events is not only especially attractive but also close to reality as many pa-
rameters are varying randomly within certain boundaries.

Stock-keeping is an important cost factor for many companies. A clever balance between the clients’
requests — complying with orders — and keeping the stock as small as possible must be found.

I set up the model according to Bossel (System Zoo 3):

The respective Warehouse Stock results from time dependent quantities Sales and Deliveries (accord-
ing to received Orders). Orders are based on the Warehouse Stock and on the actual Sales. Three
parameters must be considered: DAILY SALES ORDER FACTOR, STOCK DEFICIT ORDER FACTOR and
WAREHOUSE STOCK GOAL. An important parameter for Deliveries is the DELIVERY DELAY.

Varying Sales is defined by the Random Deviation of AVERAGE DAILY SALES. We use a random num-
ber (by applying a uniform distribution) for obtaining the Daily Random Number. Additionally given
is the percentage of the sales event SALES PULSE PERC for a certain day of this event SALES DAY
PULSE. Now we are able to investigate the dynamics in this system.

All other quantities which are influencing the system can be read off from the stock and flow diagram.

Stock- keeping and Orders

AVERAGE SALES PULSE SALES DAY MAX SALES
DAILY SALES PERC PULSE FLUCTUATION

Sales Pulse

<TIME STEP>
Random
Deviation - Daily Random
find new value Number remove old value
INITIAL STOCK <Time>
Warehouse
/Sales Stock Deliveries
SALES \,omers
REMAINDER RAV K
DAILY SALES STOCK DEFICIT WAREHOUSE DELIVERY
ORDER FACTOR ORDER FACTOR STOCK GOAL DELAY

I show the document containing all settings and equations (including the dimensions).
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Settings

FINAL TIME = 500
Units: Day
The final time for the simulation.

INITIAL TIME =0
Units: Day
The initial time for the simulation.

SAVEPER = TIME STEP
Units: Day
The frequency with which output is stored.

TIME STEP = 0.0625
Units: Day
The time step for the simulation.

Parameters

AVERAGE DAILY SALES = 1000 Old warehouses in Amsterdam
Units: Pieces/Day

DAILY SALES ORDER FACTOR = 1
Units: 1 [0,2,0.125]

DELIVERY DELAY =20
Units: Day [0,?]

INITIAL STOCK = 2000
Units: Pieces [0,10000,1000]

MAX SALES FLUCTUATION =25
Units: 1 [0,50,5]

SALES DAY PULSE =10
Units: Day

SALES PULSE PERC =0
Units: 1 [0,50,10]
Percentage of the average daily sales

SALES REMAINDER RATE =1 Market Scene in Marangu, Tanzania
Units: 1/Day

STOCK DEFICIT ORDER FACTOR = 0.125
Units: 1/Day [0,1,0.125]

WAREHOUSE STOCK GOAL = 2000
Units: Pieces
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Dynamics (= Equations)

Daily Random Number = INTEG (+find new value — remove old value, 0)
Units: 1

Deliveries = DELAY FIXED(Orders, DELIVERY DELAY, AVERAGE DAILY SALES)
Units: Pieces/Day

find new value = IF THEN ELSE(ABS(Time — INTEGER(Time)) <= TIME STEP/2,
RANDOM UNIFORM(0, 1, 0)/TIME STEP, 0)
Units: 1/Day

Orders = IF THEN ELSE((DAILY SALES ORDER FACTOR*Sales + STOCK DEFICIT ORDER

FACTOR*(WAREHOUSE STOCK GOAL — Warehouse Stock)) > 0,

(DAILY SALES ORDER FACTOR*Sales + STOCK DEFICIT ORDER

FACTOR*(WAREHOUSE STOCK GOAL — Warehouse Stock)), 0)
Units: Pieces/Day

Random Deviation = AVERAGE DAILY SALES*(2*MAX SALES FLUCTUATION/100)*
(Daily Random Number-1/2)
Units: Pieces/Day

remove old value = IF THEN ELSE(ABS(Time + TIME STEP/2 — INTEGER(Time +
TIME STEP/2)) <= TIME STEP/2, Daily Random Number/TIME STEP, 0)
Units: 1/Day

Sales = IF THEN ELSE(AVERAGE DAILY SALES + Random Deviation + Sales Pulse <
Warehouse Stock*SALES REMAINDER RATE, (AVERAGE DAILY SALES +
Random Deviation + Sales Pulse), (SALES REMAINDER RATE*Warehouse Stock))

Units: Pieces/Day

Sales Pulse = (SALES PULSE PERC/100)* AVERAGE DAILY SALES*
PULSE(SALES DAY PULSE, 1)
Units: Pieces/Day

Warehouse Stock = INTEG(+Deliveries — Sales, INITIAL STOCK)
Units: Pieces

For our first simulation we set SALES PULSE PERC = (0 and observe the process which is now the result

of random fluctuations only.
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Please notice the command DELAY FIXED in Deliveries. At every delay in deliveries the value of the

input must be stored for the present in order to hand it over later. (We will make use of the DELAY

command in the last chapter.)

Let us observe the process over a period of 500 days:

Warehouse Stock and Orders

5,000 Pieces
2,000 Pieces/Day

3,750 Pieces
1,500 Pieces/Day

2,500 Pieces
1,000 Pieces/Day

1,250 Pieces
500 Pieces/Day

0 Pieces
0 Pieces/Day

w' VW ‘

W

0 50 100 150 200 250 300 350 400 450 500

Time (Day)

Warehouse Stock :

Pieces

Sales :

Pieces/Day

We select any space of time and spread it for a more accurate inspection, e.g. the span between days

100 and 150.

Warehouse Stock and Orders

4,000 Pieces
2,000 Pieces/Day

2000 Pieces [ I
1,000 Pieces/Day .'|' U p: I “

0 Pieces
0 Pieces/Day
50 70 90 110 130 150
Time (Day)
Warehouse Stock : Pieces
Sales : Pieces/Day
Orders : Pieces/Day
Deliveries : Pieces/Day

Bossel gives the interpretation in his book as follows:

“As long as no Delivieries on earlier Orders are arriving the increasing difference from
the WAREHOUSE STOCK GOAL together with ongoing Sales is resulting in more Orders
which lead after the DELIVERY DELAY to Deliveries. Thanks them the Warehouse Stock
is increasing and the Orders can be reduced. According to DELIVERY DELAY Deliveries

will decrease after a while and the cycle starts again ...*
(This was not so easy for me to translate and I hope that I did it not too bad!)
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Function RANDOM UNIFORM(0,1,0) generates a uniform distrubuted (pseudo) random number in
the interval (0,1) with 0 as initial value L.e. that we will receive the same random numbers at every
simulation run as long as we don’t change the third parameter.

I changed to RANDOM UNIFORM(0,1,1) in the equation of find new value to run another simulation
and present again the period of 100 days. Can we confirm Bossel’s oberservation?

Warehouse Stock and Orders

4,000 Pieces
2,000 Pieces/Day

2,000 Pieces
1,000 Pieces/Day

0 Pieces
0 Pieces/Day
50 70 90 110 130 150
Time (Day)
Warehouse Stock : Pieces
Sales : Pieces/Day
Orders : Pieces/Day
Deliveries : Pieces/Day

) ) ) Warehouse Stock and Orders
After simulation with random sales fluctua-

. K . X X 4,000 Pieces
tions we will repeat the simulation consider- 2,000 Pieces/Day
ing one single Sales pulse which is then fol-
lowed by constant daily sales. 2000 Pieces
1,000 Pieces/Day
Two parameters must be changed: 0 Pieces
0 Pieces/Day
0 100 200 300 400 500
MAX SALES FLUCTUATION =0 Time (Day)
Warehouse Stock : Pieces
SALES PULSE PERC =20 Sales : Pieces/Day
Orders : Pieces/Day
Deliveries : Pieces/Day

The pulse can be seen as short vertical seg-
ment on the left border.

o Warehouse Stock and Orders - Phase diagram
We can observe an undamped periodic os-

4,000
cillation of the stock with a period length of
about 80 days. 3,000
The phase diagram demonstrates this very g 000
clear. B
1,000
0
750 850 950 1050 1150 1250

Deliveries

Warehouse Stock :
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The respective program with DERIVE

Ich must admit that [ had some problems understanding and reproducing the dynamics manually be-
fore realizing the process in form of a DERIVE program. However, finally it worked. I will omit this
step here. It should be possible to read off the procedure from the program.

I predefined the parameters and did not include them into the list of function arguments. I believe that
this makes running the simulation more comfortable. Of course I wanted to compare my results with
the VENSIM-data. DERIVE delivers other (pseudo-) random numbers. What to do?

I transferred the listof the first 500 VENSIM generated random numbers into a data list for DERIVE.
This was not difficult. I named this list as rdnrs. Here are the first five numbers of this list:

rdnrs
(1, ..., 5]

[0.4927785098, 0.56665027, 0.0716178&7, 0.651055%46, 0.3773718198]

I kept the designation of the variables as short as possible — but yet understandable — in order to obtain
a well readable program code.

The first lines serve for defining the parameters.
[1hi_st = 2000, stdel_of := 0.125, dailys_of = 1, stgoal = 2000, deldel := 20]
[max=f1 1= 25, avgsales = 1000, salesremrate := 1]

This is the program. Please note the line between quotes!

whouse(n, dt, i, t, rddev, sales, delivs, orders, stock, dayrd, tab) ::

PROG(
"rdnrs := VECTOR(RANDOM(1), i, 500)",
n := n/dt,
i=1,

[t = 0, stock := ini_st, delivs := tvm],
rddev := avgsales-2-maxsf1/100.-(-0.5),
sales := avgsales + rddev,
orders := dailys_of-.sales,
tab := [[t, stock, sales, orders, delivs]],
LOOP(
IF(i > n, RETURN tab),
t =t + dt,
dayrd := rdnrsyCEILING(t),
rddev := avgsales-2.maxsf1/100-(dayrd - 0.5),
stock := stock + dt-(delivs - sales),
sales = IF(avgsales + rddev < stock-salesremrate,
avgsales + rddev, salesremrate-stock),
delivs := IF(i < deldel/dt, avgsales, taby(i - deldel/dt + 1).4),
orders := IF(dailys_of-.-sales + stdel_of-(stgoal - stock) > 0,
dailys_of-sales + stdel_of-(stgoal - stock), 0),
tab := APPEND(tab, [[t, stock, sales, orders, delivs]]),
i+ 1))

I plot the time-stock-diagram for time steps 0.0625 (System Zoo), 0.25 and 1
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We can see that we receive the same 0.0625-diagram as given in Bossel’s book and further that it
seems to be sufficient choosing a time step df = 1.

Cwhouse (500, 0.062500,,[1, 2]
(whouse (500, 0,250,511, 2]

Cwhouse (500, 1330001, 2]

5000

20 40 60 & 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

black: dt = 0,0625; blue: dt = 0,25 and red: dt =1

>

In my opinion time step 1 (day) make sense. Who will update every 30 minutes (= 1/16 of a n 8 hours
labour day) update the sales numbers, the orders etc. Usually this happens at the and of a day or even
of a week!

My DERIVE-model does not consider the Sales Pulse. 1 realized the model with the random deviation
from the average only. As mentioned above I used the (pseudo) random numbers generated by VEN-
SIM in order to have a reference available (to check the correctness of m< program).

Let’s compare the first rows of the resulting tables.

Here are the results of the first seven time steps performed with VENSIM:

w-M=IRl:] Warehouse stockand Orders . . [a
Time (Day) VWarehouse Stock Sales Drders Deliveries
2,000 750 750 1,000
0.0625 2016 996 39 994 44 1,000
0125 2016 996 39 994 41 1,000
01875 2016 996 39 994 38 1,000
0.25 2016 996 39 994 35 1,000
03125 2017 996 39 994 32 1,000
0375 2017 996 39 994 30 1,000

The DERIVE results are following:
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whouse (0,25, 0.0625)

0 2000 750 750 1000

0.0625 2005.625 996, 289255 954 .43613 1000

0,125 2015, 850671 996, 385255 9594 .407921 1000

01875 2016, 076343 996, 389255 994, 3757121 1000

0,25

2016, 202014 996, 389255 9943515021 1000

Ok, the first rows maybe the same, but how will it look some days later?
I take the section around day 20 which is the time for delivery of the first order.

I start presenting the respective part of the DERIVE-table:

(whouse (500, 0.062500

[315, o, 325]
[ 19.625  1838.602725 1030.294595 1050, 469254 1000 i
15,6875 1836.705313 1030, 2945595 1050,70593 1000
159.75 1834, 8159  1030.254595 1050.942607 1000
15,8125 18&32.922488 1030.294595 1051.17928&3 1000
15,875 1831.025076 1030, 294555 1051.41596 1000
15,9375 1829.135664 1030.294595 1051.652636 1000
20 1827, 242252 1030.254595 1051, 885313 750
20,0625 1809723835 928 2V672 952.06124 5994 .42613
20,125 1813, 858803  928.27672 9515443656 9594 407921
20,1875 1817.992003 928.27672  951.0277196 994 3797171
20,25 1822.12344 928, 2¥Y672  950.51128%9 954, 3515021

Comparison with the VENSIM-results shows complete correspondence.

e B=IRl:] Warehouse stockand Orders .. . [u
Time (Day) YWarehouse Stock Sales Orders Deliveries
19625 1,839 1,030 1,050 1,000
196875 1,837 1,030 1,051 1,000
1975 1,835 1,030 1,051 1,000
19.8125 1,833 1,030 1,051 1,000
19.875 1,831 1,030 1,051 1,000
199375 1,829 1,030 1,052 1,000

20 1827 1,030 1,052 750
200625 1,810 928 28 952 06 994 44
20125 1,814 928 28 95154 994 41
201875 1818 928 28 951.03 994 38

This correspondence remains for the rest of the tables.
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It is easy to zoom into any section of the 500 days period.

4000
tock
2000
Deliveries
Sales
50 52 54 56 58 50 62 64 66 68 70 72 74 76 78 &0 82 &4 &5 88 90 92 94 96 98 100

As I can be sure that my model works correctly I will activate the random number generator of
DERIVE. What I have to do is removing the quotes in the first program line.

I run the simulation for df = 1 three times and plot the stock graphs on the same axes.

5000

20 40 60 80 100 120 140 160 1&1 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

Following this procedure we could also perform the simulation using 7/-Nspire, GeoGebra or
MS Excel. This would offer the possibility to introduce sliders for all parameters for better studying
their influence.
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10 Rossler Attractor

If you are interested in dynamic systems, fractals and chaotic behaviour then
you will very soon read about ,,strange attractors®, like the famous Lorenz
Attractor, the Hénon Attractor, the Ikeda Attractor and others — and the
Rossler Attractor.

The Rossler Attractor (Otto E. Rossler, German biochemist, born 1940 in
Berlin) is described by a system of differential equations.

X=-y-z
y=x+ay
z=b+z(x—c)

Roessler Attractor

YO X0

v C—X=P X

Increse Y Increase X

Increase Z

As there are only a few variables necessary, the parameters and equations for the stock variables are

quickly fixed.

Parameters for the first simulation X = INTEG(Increase X, X0)

a=0.55 Y = INTEG(Increase Y, YO)

b=2 Z = INTEG(Increase Z, Z0)

c=4

X0=1 Time parameters for the first simulation
Y0=0 INITIAL TIME =0

Z20=0 FINAL TIME =100

Dynamics TIME STEP =0.01

Increase X =-Y -Z SAVEPER =0.05

Increase Y = +X + a*Y

Increase Z=b + Z*(X — ¢)
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We visualize the oscillations for )X, ¥ and Z for the first 100 time units. I separated the graphs using
different scalings for getting a better diagram.

Roessler Attractor

48 1

© T AN NN
18 1
-18 1
0 1 H H H N
-12 1

-48 1
-30 1
0 10 20 30 40 50 60 70 80 90 100
Time (Unit)
Z: 1
Y: 1
X . 1

These diagrams can also be displayed with SyntheSim for observing the influence of the parameters.
Unfortunately this is not possible for the phase diagrams. It is a pity that we cannot admire the beauty
of the attractor in its full 3D-appearance with VENSIM. We must be content with projections of the
object into the coordinate planes (front view, side view and top view).

XZ-Projection YZ-Projection
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Some parameter combinations lead to limit situations with doubling periods occuring. We will show
this on the next page and then again in the frame of the T/-Nspire-modelling..

Again [ must regret that despite the many features of VENSIM — which we cannot fully exploit at all —
there is no way to produce a 3D-presentation and there are no more extended sliders.

DERIVE offers both features. So I will turn to this CAS. But here is also some reason for regret. The
spatial presentation needs a huge number of points calculated by the Runge-Kutta-method and we
cannot introduce sliders because of reasons which we mentioned earlier.

DERIVE and the Roessler Attractor

The projections into one of the coordinate planes need only one command line. Within a few seconds
we can admire the result of the calculation in form of 10 000 points.

(RK([-y - z,x + 0.55.y,2 + z-(x - ],[t,x,y,2z],[0,1,0,0], 0.01, 10000))44[2,4]
(RK([-y - z,x + 0.55.y,2 + z-(x - ©)],[t,x,y,z],[0,1,0,0], 0.01, 10000))yi[3, 4]
(RK([-y - z,x + 0.55.y,2 + z-(x - )],[t,x,y,z],[0,1,0,0], 0.01, 10000))yi[2, 3]

-4 -3 -2 -1 1 2 3 4 5 6 7 8 -& -7 B -5 -4 -3 -2 -1 1 2 3

XZ-Projection YZ-Projection

XY-Projection
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Taking the parameters as follows we have limit cycles for ¢ = 2, 3 and 4, which let us recognize the
period doubling.

VECTOR((RK([-y - z, x + 0.2:y, 0.2 + z-(x - o], [t, x, vy, z], [0, 1, O, O],
0.01, 10000))yy[2, 3], c, 2, 4)

N

DERIVE enables displaying this beautiful attractor in three dimensions. 4000 points are sufficient for
producing a fine graph.

(RK([_y - Z,X + 0-55')/;2 + Z'(X - 4)],[tsxsylz]![0111010]’ 0-05’ 4000))ll[2!3!4]
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Rossler Attractor with Sliders and 77-Nspire

I find it boring entering the command line again and again when changing one or the other parameter
and then waiting some seconds for inspecting the resulting graph. I’d like to observe the influence of
the parameters continuously. That is: we need sliders. 7/-Nspire (and GeoGebra and MS-Excel as
well) offer them.

I start with 7/-NspireCAS. As 1 did in earlier models I do not use a program but I rely upon the spread-
sheet. [ will apply the Euler-method in my first attempt. In order to obtain a reasonable result [ must
keep the step width very small which provokes a large number of steps, i.e. a (possibly too) large num-
ber of rows in the spreadsheet for 7/-Nspire. Runge-Kutta can be done, but this procedure is very
costly. I choose the middle course and will work applying the “Improved Euler method” for solving
systems of differential equations.

I install sliders for the parameters a, b and ¢, for the initial values x0, y0, z0, and for the step width df.
The right sides of the system are defined as independent functions.

—
fka}gz) ="y-z Fertig a
g(xl}qz) =xt+ay Fertig
h(xmz) =b+z (x—r:) Fertig
|
3/99

Now I am ready to insert the spreadsheet application.

The situation is given by the following positions of the sliders: x0 =-0.1,y0=2,z0=0,a=5b=0.2,
c=2,dt=0.1

t .XW .yw .ZW . . . . . . I

0-0.100000 2.000000 0.000000-2.000000 0.300000 0.200000-2.050000 0.106000 0.134000
0.100000 -0.302500 2.020300 0.017700 -2.038000 0.101560 0.159246 -2.064081 -0.100209 0.115727
0.200000 -0.507604 2.020368 0.031449-2.051816-0.103531 0.121139-2.053577-0.310783 0.081824
0.300000 -0.712874 1.999652 0.041587 -2.041249 -0.312843 0.087153 -2.018670 -0.523327  0.053240
0.400000 -0.915870 1.957838 0.048616 -2.006455 -0.524302 0.058241 -1.959848 -0.735433 0.030335
0.500000 1114185 1.894852 0.053045 -1.947897 -0.735214 0.034807 -1.877836 -0.844708 0.012957

The first row is filled in according to the improved Euler method as follows:

100




The contents of the first row cells from Al to J1 are:

Al: 0 B1:=x0

El: =f(bl,cl,dl) Fl:=g(bl,cl,dl)

H1:=1f(bl +dtel, cl +dtfl,dl +dtgl)

J1: =h(bl +dtel, cl +dtfl,dl +dtgl)
The second row is following:

A2:=al +dt
F2 : J2 are copies of F1 : J1.

B2:=dt/2 (el +hl)

Cl:=y0
G1l:=h(bl,cl,dl)
I1: =g(bl +dtel, cl +dtfl,dl +dtgl)

C2, D2 are copies of B2

This second row is to copied down in order to produce more points. It is recommended to perform this
process in more steps to not overstress the system, at first until row 201, then proceed to row 401 and
finally until row 601. This gives 600 points which is sufficient for fine graphs. Columns A to D are
denominated and the columns (= lists) are used to plot the scatter diagrams which can be formatted as

you like — and what is most important, they react immediately on the sliders.

The first screen shot shows all time-diagrams together with one projection (YZ-projection).

18.34 ¥
a=55

0.000000  1,000000
b=2.0

|

0.000000  5.000000

€=4.00
O
0.000000  10.000000

dt=07

—_—

e
.010000 100000

(tzw)

22,00

x0=1,00 va=aon v

RER D T I e R
-3.000000  3.000000 2-000000  3.00000

20=0.00

=
-3,000000  3.000000

60. 44

X< yw
<< s 7w

Small movements with the sliders let us receive the representation of the limit cycles.
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“Text

Al x0=-10 ¥0=2.00

0.000000  1,000000 T
-3.000000  3.000000

b=2
e 20=0.00
0.000000  5.000000 _—
-3.000000 3.000000
©=2.00

A

.010000 .100000

855

XY-Projection — Limit Cycles

Take ¢ = 5.2 — and the limit cycles tend to be-
come chaotic (right screen shot).

a=.120

e
0,000000  1,000000

0.000000  5.000000

©=5120

=0
0.000000  10.000000

dt= 10
R
,010000 100000

v 67
x0 =10
-=;)=-

-3,000000 ~ 3,000000
z0 =0.00

s
-3.000000  3,000000

This works really excellent and can be reproduced in classroom — at least in my opinion.

I still have the hope to produce a three dimensional representation of the attractor together with sliders.

We expect a 3D-GeoGebra in the near future (and possibly there will follow a 3D-Nspire, too), then

we will be able, but now?? There is indeed another way, come and look!

The Rossler Attractor in three Dimensions with Sliders

The spreadsheet programs implemented in Nspire and GeoGebra are quite nice but for really many
data I like to turn back to good old MS-Excel. (I don’t forget that Nspire has and GeoGebra will have
in the near future CAS features available in the spreadsheet, too!)

I introduce for all parameters — except for df —
sliders (which are called in the German version
“Schieberegler” = “slide controller”).

Entering the formulae is some work, but it is not
too much to do.

2000 iterations and more can be performed with-
out any problems. So we can have a step width of
0.05 to reach ¢ = 100.

| x0 4
| o
| 20 4
| a

» 25
» 14
» 31
» 0,17
| » 156
»| 253
dt 0,1
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It is really fascinating to observe how the three projections are reacting simultaneously on every
change of the parameters.

This is not new, but what about a three dimensional picture? We could produce a parallel projection or
even a central projection of the 3D-object into the 2D-plane.

Top-, front- and side view could be seen earlier. I will refer to a presentation which we all know from
our time as student: the oblique view. This representation form is determined by a dilatation in x- or y-
direction and the angle which is formed by this dilatated axis and and the horizontal line. I fix the dila-
tation with 0.75 and make the angle variable using another slider, of course.

The transformation equations which give the coordinates x* and y’ of the mapping resulting of the
space coordinates of a point (x, y, z) are:

x'=-0,75xcosa+y

!

y =—0,75xsinax + z

These formulae are the entries for the next two columns and copied down. The two columns are used
to create the diagram which represents the oblique view of the attractor (bottom left).

24371707 -00474047 2 702137 AT31
2371484 -0559605 2,718685 245174
2,394880) -1,074487 2683008 23369
2271153 1563913 2505546 20370
1,966896 -2002839 2459161 15368

A mrs DiaowammflEche Fama Arramnl nmarrAl a Aorons A anrcae 4 dmmano AspanTa A Amanrel A nren

X=—y—z
Roessler Attraktor
y=x+ay
z=b+z(x—c)
t XW yw w f(x,v,2) g(x,yz) h(x,y,z)
xo 4 » _2’3 O‘OOOOOO -2,300000 L FaTataTalalits BE: NaTatatatal 4 faTatalatal 2y 0 49 2000 faWawLoTatatal A4 AL 2
yo 4 v 14 0100000 -2,388695 b3 6
z0 « r 31 0200000 -23703486 ] 5}
0300000 -2275667 ra 5}
a 4 » 017 0400000 -2,124469 1 6
b 4 » 156 0500000 -1928743) 4z 6
c 4 | b 263 0600000 -1,700388 b3 1
0700000 -1442924 3 6
dt 0,1 0800000 -1,162534 21 4
0900000 -0,363686 1 3
1.000000 -0550504 X 0 Y 8
1,100000  -0226979 - - - - ¢ - - N =35
1200000 01029091 -3 805454 049506 3 31039 -0 544018 0308934 3333901 -0,222227 04049
1 Roessler 3D 31 0385054 3295335 0,109273 0‘49?
alpha® 4 b7 1 4] 0
1 1 7
1 }¢] 4
1 8|z 8
1 3 8
2 T 0
2 0 0
2 4 5
2 3 X 4
2 ¢
2 }¢]
2 [§]
2 4
2 [¢]

The next page shows another configuration of the parameters. The diagrams are based on a step width
dt=0.05.
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t XW yw Zw f(x.y.2) a(xyz) h(x,y,z)
xo 4 » 2,9 0,000000 2|900000 A Q00nnn 3 A0ANNN L faTalalaTal 2 al 0 fedalsTatalal L I=TaTalal etk =3 fal
yoood [ v 13 0050000 281035 g
20 A k31 0,100000 27217423 6
0,150000 26344315 03
a 4 [ | +| 0,44 0,200000] 25485919 s
b« v 1,36 0250000 24643236 b0l 7
c 4 ¥ 4,18 0,300000) 23816534 2
0,350000 23005524 P8 b
dt 005 0400000 22200342 9 ;
0450000 21426689 3
0,500000 2 0655902 X 59 v
0,550000 19895045 - - - : 6 : : : :
0600000 19141983 -0 0364 153716 -1 500674 1898144 -2122903  -1432436 1564869 1,989
0 Roessler 3D 4 196871620 1485313 1831213 -1.862
0 9 G
alpha® 4 k136 0 4
0 5
0 3
0 1z 4
0 g ]
1 2
1 5
1 5]
1 4 X G
1 & 0879853 1896559 TARFE7T 075
1 3 0757063 1717654 1312020 -06854
1 2| -0B91992) 1749044 1253591 -0,6254
1 D 0531561 1780311 1192274 -0570
1 0 -0576496 -1811053 1,128021 -0,520
Here is another screen shot presenting limit cycles which are addressed on pages 98 and 99.
t xw yw zw f(x,y,2) g(x.yz) h(x,y,2)
» 0 0,000000 0,000000 A 2000000 4 OCCCingn (W TaTaTaTaTa] [ isTal 0 I eTaTatalatal O ENeEn . O SEnoe T ] 0’3785
b 13 0,050000 0,0200913 2 [23
4 1 0,100000 0,0484887 B6 7
0,150000 0,0837091 5 F4(
v/ 0,21 0,200000| 0,1245116 D2 165
| 02 0,250000 0,1698557 | 00| 7 77
v 4 0,300000 0,2188647 h7 o9
0,350000| 0,2707955 H9 54
0,05 0400000 0325013 p4 L 144
0450000 0,3809699 p0 87
0,500000 043819 X b5 v 04
0,550000 04962541 L : : : - - et 26
0600000 055470 1377057 0158040 1172011 027108 -0334151 1174913 0337609  -0.25844
0 Roessler 3D 40274033 1,168535 0400140 -0,2202
0 6 54
v 136 0 0 8
0 1 77
0 7 37
0 0| 74
0 2 34
1 B 4
1 9 e 7(
1 1 74
1 4 X 27
1 9 -0,02453497  0BTT009] T,05T157] -0,0T804
1 2 -0018628 0757821 1101724 -0,01289
1 5 -0,013381 0702123 1,150087  -0,00861
1 7 -0,009047 0643773 1196090 -0,00513
1 3 -0,005492 0583026 1,239584 -0,00224
1A50N00 1 ATRTAARA . A RSANRS | NNTT2A NAE18749 1238337 N 0NPRIN N 5N0A43 0 1 280498 0 00007

One can proceed in the same way with 71-Nspire and it works. The reactions are not as smooth as with

Excel.
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11 Gumowski-Mira — and another “attractive® Attractor

My intention was to stop with chapter 10. But then I became ambitious enough to add something
which cannot be found in the System Zoo.

The world of the ,,strange attractors* is a won-
derworld of forms and ideas behind the forms.
In one of my Chaos-books 1 found a note on
the Gumowski-Mira-Attractor. This attractor
was discovered by two physicists, I. Gumowski
and C. Mira in the frame of their work at
CERN in Geneva in 1980.

The original model is described by

X =by, +f(x, 2(1-a)x’
P TbIAS ) 20
yn+1 :_'xn +f('xn+1) 1+.X7

; a, b are constants.

2

Exploring Gumowski-Mira with a Computer Algebra System

I was interested in this fascinating and manifold class of attractors prior to my knowledge of VENSIM.
My tools were DERIVE and WIRIS.

The DERIVE-Code is easy to follow. Some

1000 points can be generated and plotted in 2:(1 - a)-u
#1: flu, a) = awu +

a short time. 5
The task is to find “attractive” values for L e
the parameters a and b. gumd(x0, v0, a, b, n, xn, yn, 1, pts) =
Prog
Searching in the Internet I came across pts = [[x0, y01]
great websites containing rich selections of 1:=1
. [11, 12, 13,14] Loop
exciting graphs. If i+ n
#2: RETURN pt=

xn oz bey0 + (=0, a)
yn ooz —x0 + flxn, a)

Of course, real fun makes own experiment- pts = APPEND(pts, [[xn, ynll)
ing, researching and discovering. x0 1= xn

w0 = wn

1+ 1

gum0(1, 1, 0.245, 1, 20000) gum0(1, 1, -0.245, 1, 20000)
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gum0(1, 1, 0.01, 0.978, 20000)

This is an “own‘‘ creation::

Comment: | am missing my beloved sliders!

Please compare the WIRIS-program with the
DERIVE-program.

[
2-(1-a)-x?
1+x2 '
gumO0(x0,y0,a,b,n) :=begin
local list,xn,yn

list : ={point(x0,y0)}
for iin[1..n] do

g(x,a) i=a-x+

yn=-x0+g(xn,a)

x0=xn
y0=yn

end

end ;
| gum0(1,1,-0.305,1,10000) => plotter1

xn=b-y0+g(x0,a)

list = list+{point(xn,yn)}

plot(list,{point_size=1})

gum0(1, 1, -0.27, 0.995, 30000)

There are only slight changes in the syntax. The plot

of 10 000 (!) points is convincing.
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Little change — Big effect: Change of sign creates
a very different plot.

2-(1+a)-x?
1+x2 '
| gumo(1,1,-0.305,1,10000) => plotter1

g(x,a):=a-x+

Hunting for “beautiful* attractors supported by sliders

When working with 77-NspireCAS we cannot calculate (and plot) thousands of points but in most
cases we will get an impression plotting the first hundreds of points whether there could an ,,attrac-
tive attractor be hidden or not.

B-mBEwn B

This is reason enough for me to use this tool as a

vehicle for my search. The procedure is very L
similar to that one which I used investigating the | £ f(u ; ) . 2 (l—a_)' ug
= =q_ _—
Roessler attractor. = T
o 1+u
ak}
T
]
=

Only two columns are needed. In this case the time-diagrams are without any value for us.

%, F F F &, & § F
1, 1, 1, 1,
2| 0.316 2|  0.316]
1,632 -0.672273 1.632/-0.672273
0.655454 -1.06962 0.655454 -1.06962
-0,507232| 0.404533 -0.507232| 0.404533
1,46452 179992 146452 1.79992
3.09261 -0.564006 i 3.09261 -0.564006 i
42 [=b-b1+fla1,a) [«T» B2 |=-ar+f{aza) [«]»

The sliders installed for a, b, x0 and y0 allow free experimenting. Additionally we can vary the defini-
tion of function fat any time.
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It does not need much time to discover a promising scatter plot:

3799

56.26

I switch to DERIVE or WIRIS and would like to observe the result of calculating and plotting not less
than 20 000 points.

gum0(1, 1, -0.71, 1, 20000)

Taking @ = 0.71 instead of @ =—0.71 and plotting o ,.:;.L‘: " A
the first hundreds of points I receive just another <t " TS e e
— but even interesting — picture. II"? . "!?"
This makes me curious again and I insist seeing : : 7 '.3';'-'-_-
the attractor in its whole beauty. '{q . A

. U CRLY T =T
The next page will unveal the secret. T £ T, ¥ I:-fj.'r)
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gum0(1, 1, 0.71, 1, 20000)

Can we do this with VENSIM, too?

Unfortunately I mus admit that [ — as a VENSIM-novice — was unable to set up an appropriate model.
I had problems addressing x, and x,+; as well in the definition for y,.;. I sent a request to VENSIM via
http://www.vensim.com. I was very much surprised recieving an answer after some minutes.
The answer was not very helpful for the moment. It read as follows:

1 don't see why you cannot do it. To get the old values of x and y use DELAY FIXED with a delay time
of one time step.

I had to admit my inability and I received an invitation:

Can I ask you to post the question on our forum so that others can benefit from the answers as well?

I followed this invitation and — the next surprise — there arrived an answer after a short while together
with the respective VENSIM-file. As I noticed later my request started an interesting discussion in the
VENSIM-Forum'".

See first the VENSIM-model of the Gumowski-Mira attractor:

Gumowski-Mira Attractor, Tom Fiddaman, 2011

models.metasd.com

See http://petervandernoord.nl/blog/2010/11/the-strange-beauty-of-the-gumowski-mira-attractor/

b——=X(n+1) > Xn) X0
a< <TIME STEP>
Y(n+1) >  Y(n) Y0
<FINAL TIME>
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The VENSIM - document offers full details:

(02) a=0.6

(03)  b=0.995

(04)  FINAL TIME = 2000
(05)  INITIAL TIME =0

(06) SAVEPER = TIME STEP
(07)  TIME STEP =1

(08)  "X(n)"=DELAY FIXED ("X(n+1)",TIME STEP,X0)

(09)  "X(n+1)" = b*"Y(n)"+a*"X(n)"+2*(1-a)*"X(n)" 2/(1+"X(n)""2)

(10) X0=225

(11)  "Y(n)"= DELAY FIXED ("Y(n+1)",TIME STEP,Y0)

(12)  "Y(n+1)"=-"X(n)"+a*"X (n+1)"+2%(1-a)* "X (n+1) " 2/(1+" X (n+1)""2)

(13)  Y0=7.75

Here we find the DELAY FIXED-command which makes possible the one step delay. When using the
parameters from above we are presented a “Seven Cluster of Stars”.

Tom Fiddaman added a short comment:

The behavior is really amazing.

See below the “Clusters” consisting of 20 000

“stars” generated with DERIVE.

XY

"Y(n)": GM

This was not the end of the discussion. Another member of the VESNIM-Forum sent a contribution:
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Hi Tom,

1 do not see any reason for using a DELAY FIXED here. You can handle discrete systems - e.g. differ-

ence equations’ systems - using the regular System Dynamics notation. What you need to do is:

1.
2.

See
Che

(01)
(02)
(03)
(04)
(05)
(06)
07)
(08)
(09)
(12)
(13)
(14)
(17

Set the time step to 1.

Convert the Stock Equations into difference equations, e.g. Delta X = X(t+1) — X(t) = dx/dt

with dt = 1.
In the case of the Gumowski-Mira-System a bit of algebra will convince you that no delays are
needed.
the model enclosed.
ers, Guido
Gumowski Mira Attraktor without DELAY FIXED - by GWR
<b>
X <X0>
/_ dx/dt
o /
<><>/ \\&\} <Y0>
dy/dt
a=0.6
b=0.995

ndx/de" = (b*Y+a*X+2*(1-2)*X 2/(1+X72))-X

"dy/dt" = (-X+aF X (t+1) 2% (1-a) "X (t+ 1) 2/(1+"X(t+1)"2))-Y

FINAL TIME = 2000
INITIAL TIME =0
SAVEPER = TIME STEP
TIME STEP =1

X = INTEG ("dx/dt",X0)
"X(t+1)" = "dx/dt"+X
X0=2.25

Y = INTEG ("dy/dt",Y0)
Y0=17.75
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It is interesting that both graphs do not correspond exactly. Comparing the values for X we observe a
correspondence until X34. Then the values become different from another. It seems to be that two dif-
ferent algorithms are used in the background. What is Tom’s opinion?

Guido,

You're entirely correct. The INTEG notation that you used is probably the nicest way to do this for
formal correspondence with discrete derivative notation. However, as long as TIME STEP=1 and
Euler or Diff integration is used, the results will be identical whether INTEG, SMOOTH, or DELAY
FIXED is used. (Diff integration is the same as Euler, but the rates and levels are stored differently,

which makes it easier to see the initial values of the rates - sometimes useful for discrete systems like
this.)

Tom

For function f{x) many forms can be chosen — including trig- and exp-functions. Marvellous plots are
16]

our reward.!

3-a bix

gum_gen| -2.8, 17, 0.04, 1, 20000, ax + ——— gum_gen{12, 9, -0.96, 0.96, 20000, a.x - |ATAN{a - =) +
bx 2

a+e 1+

This is the end of my excursion in the world of the dynamic systems. There is a huge number of inte-
resting Internet resources. Some links are given below.

[11] http://www.maplesoft.com/applications/view.aspx?SID=87666

[12] http://elif-erdine.com/?p=283

[13] http://petervandernoord.nl/blog/2010/11/the-strange-beauty-of-the-gumowski-mira-attractor/
[14] http://www.generativeart.com/on/cic/papersGA2007/19.pdf

[15] http://www.ventanasystems.co.uk/forum/index.php

[16] http://math.cmaisonneuve.qc.ca/alevesque/chaos_fract/Attracteurs/Mira_exemples.pdf

[17] http://models.metasd.com

[18] http://demonstrations.wolfram.com/StrangeAttractorOfGumowskiMira/

112



