Optimierungsaufgaben

grafisch, numerisch und analytisch mit dem *TI*-92 lösen

von

Josef Böhm

bk teachware Schriftenreihe Nr. sR-06 — ISBN 3-901769-11-0

©bk teachware, Softwarepark, A-4232 Hagenberg, Austria, fax +43-7236-6065-71, email bk.teachware@swp.co.at

Inhalt

Einleitung	2
Problem 1: Die Schachtel	3
Problem 2: Die Strebe	. 11
Problem 3: Das Rechteck im Trapez	. 18
Problem 4: Kosten und Erlöse bestimmen den Gewinn	. 23
Arbeiten mit dem Geometrie-Werkzeug	34
Anregungen zu weiteren Problemstellungen	43
Literaturhinweise	. 47

Einleitung

Ich war im Sommer 1997 eingeladen, an einer Fortbildungsveranstaltung für skandinavische Lehrer in Kungsbacka, Schweden, mitzuwirken. Unter anderem gab ich ein Workshop zur Anwendung des *TI*-92 mit dem Titel "Optimization Concept". Bei diesem Workshop unterstützte mich Dr. Bernhard Kutzler und er ermutigte mich unmittelbar nach Ende der Veranstaltung, aus den Unterlagen ein Büchlein für seine in *bk teachware* erscheinende Reihe zu machen.

Ich bin gerne dieser Aufforderung nachgekommen. Und dies aus mehreren Gründen. Erstens läßt sich das Optimierungskonzept auch ohne Anwendung der Differentialrechnung und damit schon früh in der Schulmathematik sehr anschaulich und lebendig vermitteln. Zweitens lassen sich alle Aufgaben auf mehrere Arten behandeln: numerisch, grafisch und analytisch. Aus der Zusammenschau und dem Zusammenwirken dieser Werkzeuge ergeben sich neue und lebendige Vorgangsweisen im Unterricht.

Und drittens gibt es mir die Chance, das in unseren Breiten vielleicht am stiefmütterlichsten behandelte Werkzeug des *TI*-92 - das Geometrie - Modul - vorzustellen. Deshalb habe ich auch eine Einführung in das Arbeiten mit dieser *TI*-92 Anwendung angeschlossen. Eine zusätzliche Motivation war die Gelegenheit, mit Problem 4 eine in den allgemeinbildenden Höheren Schulen weniger bekannte wirtschaftliche Modellbildung vorzustellen.

Alle Beispiele finden Sie auf der beigelegten Diskette. Mit GraphLink übertragen Sie die Dateien über Ihren PC auf den *TI*-92. Falls Sie Speicherprobleme bekommen, dann können Sie nur einzelne *.92A - files übertragen.

Natürlich sollen die Vorgangsweisen nur als Vorschlag verstanden werden. Teile können weggelassen oder durch andere ersetzt werden. Für Anregungen und kritische Bemerkungen bin ich Ihnen sehr dankbar. Wenden Sie sich bitte an den Verlag *bk teachware*.

Josef Böhm

Problem 1: Die Schachtel

Aus einem festen rechteckigen Karton mit dem Abmessungen 45cm × 25cm ist eine Schachtel - ohne Deckel - herzustellen, indem man an allen vier Ecken gleich große Quadrate ausschneidet und den verbleibenden Rest zur Schachtel biegt. Welche Quadrate muss man ausschneiden, so dass die entstehende Schachtel das größte Fassungsvermögen erhält?

- Die Schüler produzieren Modelle aus Papier mit dem Auftrag, die Schachtel mit dem größten Fassungsvermögen herzustellen. Wer löst die Aufgabe am besten?
- © Gibt es auch recht "bizarre" Schachteln? Wie müssten Schachteln ausschauen, die am wenigsten Volumen fassen?
- Die Schüler erstellen eine Wertetabelle und übertragen die Werte in ein geeignetes Diagramm. Sie nützen das Diagramm zur näherungsweisen Bestimmung der optimalen Lösung.

1.1 Ein dynamisches Modell

Es wird Ihnen nun ein dynamisches Modell vorgestellt, mit dem Sie viele Schachteln simulieren können. Erzeugen Sie auf Ihrem *TI*-92 über 2nd [VAR-LINK] mit F1 5:Create Fol der den Folder shuttl e. Übertragen Sie mit dem *TI*-GraphLink Programm auf Ihrem PC die Dateien box. 92a und boxres. 92c von der Diskette in diesen Folder. Falls Sie nicht über die Möglichkeit verfügen, mit GraphLink arbeiten zu können, dann müssen Sie das Modell mit dem Geometrie-Werkzeug des *TI*-92 erstellen. Sie finden im Anhang eine Anleitung für das Arbeiten mit dieser *TI*-92 Application.

□ Machen Sie zuerst mit MODE den Folder shuttle aktiv (Current Folder) und laden Sie mit APPS Geometry und 2: Open die Figur box.

Es könnte sein, dass Sie zu wenig Speicherplatz zur Verfügung haben, da die Geometrie verhältnismäßig viel Speicher benötigt. Dann müssen Sie zusätzlichen Speicherplatz frei machen. Im Normalfall sollten Sie jetzt das Netz unserer Schachtel erkennen können.

FT ₹	N.	2	 ▼	°O)Ę	Ł	F5. ▼	,	₹6, ₹		177	Ņ) T	Ē	ŋ
•	•	_	45	5.0	Omr	1	×	THIS	_P0	NT	•	•	•	•	•
	-	F					Ţ		Ī						
•		1	• •				1	·	1	2	5.0)Øm	m	•	•
		Ť					Ï			×	:8 :1	.97 ,71	, .5.	55	
Shl				DEG	AUT	0			• PA	R	•		•	•	•

	^{F2} • ^{F3} ○ ^{F4} ↓ ^{F5} • 1	F6 cm ₽7 (1 7 (1 7 (1 7 (1 1 1 1 1 1 1 1 1 1
· ·	45.00mm 🕺	
		25.00mm
ĽL		×: 5.86
		V:2,589.66
SHUTTLE	Ə DEG AUTO	PAR

Bewegen Sie mit ③ den Cursor zum Punkt X, der sich auf der über dem Netz der Schachtel angebrachten Strecke befindet, bis sich der Text THIS POINT erkennen lässt. "Ergreifen" Sie dann diesen Punkt, indem Sie die ⑤ -Taste drücken.

Dieser Punkt beschreibt gemeinsam mit dem rechten Endpunkt der Strecke die Seitenlänge der ausgeschnittenen Quadrate, die Sie unten rechts unter **x**: mitlesen können. Außerdem wird das aktuelle Volumen unter **V**: ausgegeben.

© Überprüfen Sie das Volumen für einen x-Wert!

Den Punkt X können Sie nun mit dem Cursor Pad - mit weiterhin gedrücktem "Händchen" nach rechts () oder nach links () bewegen. Gleichzeitig mit der sich verändernden Form des Netzes werden die jeweils aktuellen Werte für Seitenlänge x und Volumen V angezeigt.

© Mit diesen Werten lässt sich die bereits angelegte Wertetabelle ergänzen.

Sie können aber auch eine Datentabelle mit dem *TI*-92 anlegen (lassen). Die Kombination F6 7: Collect Data und 1: Store Data lässt sich durch die Tastenfolge \bigcirc D abkürzen. Die jeweils angezeigten Werte für x und V werden in den ersten beiden Spalten der Datentabelle sysdata im Folder main abgelegt.

© Sammeln Sie ausreichend viele Datenpaare (ca. 15 - 20).

Die wechselnde Gestalt des Netzes und der damit verbundenen Schachtel lässt sich nun sehr schön animieren.

□ Über [F] 3: Ani mation können Sie den Punkt X automatisch auf der Strecke hin- und hergleiten lassen. (Beachten Sie, dass im [F6]-Menü nicht mehr das Collect Data-Symbol zu sehen ist, sonst würden Sie zu viele Daten während der Animation sammeln.)

Ergreifen Sie nochmals den Punkt X, lassen Sie X nicht aus dem i und "spannen Sie mit i die Feder", die Sie dann plötzlich loslassen.

Beobachten Sie dabei die entstehenden Schachtelnetze mit den jeweils zugehörigen Werten für x und V!

Ţ	N.	2.	רז ד	°C)[;	Y	-) F5 - ▼	-	F6.m ▼ 4	A) ₹7 ▼	Ņ		7	?)	Ē	Ņ	1
ŀ	_		_	Ю.		_			•		·	·	·	·		•	
•					OPIP	-			·	·	·	·	·	·	•		-
·	·	·	1	•	·	ŀ.	·	•	·	·	·	·	·	·	•		
•	•	·	÷	÷	·	ŀ.	+		2	5.0	90m	m.	·	·	•	Г	
•	•	·	-	÷	·		·	•	Ľ,		o' 2	à	·	·	•	┡	
•	·	·			·	•	·	•	í	1:1	0.1 0.1	192	59	5 ⁻	•	- į	
•				-		-			•					· .	•		-
CHUT	TIF		_	DEC	- AUT				FUNC					_	< H	UTTI	F

Dabei passiert aber Merkwürdiges.

Erklären Sie die beiden Figuren! Wieso entstehen da auf einmal negative Werte f
ür das Volumen V? K
önnen Sie noch die ausgeschnittenen Quadrate erkennen?

1.2 Auswertung der Daten

Nun können Sie die gesammelten Werte in der Datentabelle sysdata betrachten.

Mit APPS 6: Data/Matri x Edi tor öffnen Sie die Variable sysdata vom Typ Data im Folder Mai n. Dabei sollten Sie ein ähnliches Bild erkennen:

(Auf der Diskette ist eine bereits vorgefertigte Datentabelle boxres zu finden, die möglicherweise mehr Daten enthält.)

(F1 77) • •	Plot S	5etup Ce	3 e11 Head	der Calo	- Utiils	F7 tat
DATA	X:	V:				
	c1	c2	сЗ	c4	c5	
1	10.690	914.21				
2	10.345	1084.0				
3	10.000	1250.0				
4	9.6552	1411.3				
5	8.9655	1715.5				
6	8.2759	1989.0				
7	7.9310	2111.7				
c1,	Title	="x:"				-
SHUTTL	E	RAD AUTO		FUNC		

Die Überschriften der Spalten in Sysdata müssen selbst erzeugt werden, indem man die Zellen über c1, bzw. c2 ansteuert und den "Title" angibt.

Die Wertepaare lassen sich grafisch darstellen. Mit $\boxed{F2}$ Plot Setup und $\boxed{F1}$ Define haben Sie die Möglichkeit, die grafische Aufbereitung zu gestalten.

(FY	shuttle\boxdat Plot 1	Ŀ.
Ц	Plot Type Scatter→	۴
"	Mark <u>Box</u> →	
1	× <u>c1</u>	
5	yc2	
Ξ	Hist. Gerket Width <u>i</u>	
ă	Use Freq and Catego <u>ries? NO+</u>	L
5	Fre-4	L
6	Osteonis-Corrector	
7	(noleste Ostegoranes 🖸	L
5	(<u>Enter=SAVE</u>) (<u>ESC=CANCEL</u>)	۲
ŪSE	E + AND + TO OPEN CHOICES	-

Mit Cursor rechts öffnen Sie die Möglichkeiten für die grafische Gestaltung. Wählen Sie das Streudiagramm (= Scatter Plot), markieren Sie die einzelnen Punkte durch ein kleines Viereck (= Box). Sie können später die anderen Möglichkeiten auch durchprobieren und bei der, Ihnen als passendsten erscheinende, bleiben. Als

x-Koordinaten tragen Sie nun die Quadratseiten x (aus Spalte C1) und als y-Koordinaten die davon abhängigen Volumswerte V (aus der Spalte C2) ein.

❑ Nach diesen Definitionen wechseln Sie mit ● [GRAPH] ins Grafikfenster. Beachten Sie. dass Sie im MODE den Grafikmodus Function eingestellt haben!

	m Trace ReGra	aph Math Draw	70
		<u> </u>	
SHUTTLE	RAD AUTO	FUNC	

Es könnte nun passieren, dass Ihr Bild so aussieht. Wenn Sie nicht einmal die Koordinatenachsen sehen können, dann müssen Sie diese mit • F zuschalten.

Aber warum lässt sich sonst nichts erkennen?

Richtig, die [WINDOW]-Werte müssen den vorliegenden Datenpaaren angepasst werden. Ein Blick zurück in die Tabelle lässt Sie z.B. die folgende Einstellung wählen. (Für ySCI wäre eine bessere Vorgabe sinnvoll. Welche?) Wechseln Sie anschließend wieder ins [GRAPH]-Fenster.

© Suchen Sie mit dem F3 - Trace Werkzeug den optimalen Wert für x.

Da gibt es natürlich weitere unendlich viele Werte, deren Daten noch nicht erfasst wurden. Die Punkte liegen offensichtlich nicht irgendwie zufällig im Koordinatensystem. Könnten Sie sich eine Kurve vorstellen, auf der die Punkte des Streudiagramms liegen? Da werden Sie möglicherweise zuerst an eine Parabel denken. Die etwas "Höhere" Mathematik kennt eine Methode, die zu einem vorliegenden Streudiagramm zumindest näherungsweise eine geeignete (Ausgleichs-) Kurve finden lässt.

□ Kehren Sie mit APPS 6: Data/Matrix Editor, 1: Current zum Datenblatt zurück, und öffnen Sie mit F5 das Cal c-Werkzeug. Dort werden verschiedene Typen von Ausgleichskurven angeboten. Da die Parabel der Graph einer quadratischen Funktion ist, bietet sich die Option 9: QuadReg (für eine "quadratische Regression") an.

ſ۲	shuttle\boxdat	Calculate
L.	Calculation Type.	QuadReg > 브
	×	c1
1	y	c2
2	Store RegEQ to	y1(x)→
3	Use Freq and Catego	pries? ⊠D →
4	8784-010-010-010-010-	
2	Ostegorg	
뭐	(nolastegorias	0
Ë	(Enter=SAVE)	
USE	+ AND + TO OPEN CHOICES	

Die entstehende Gleichung der Regressionskurve soll im Funktioneneditor unter dem Namen y1(x) gespeichert werden. Das Ergebnis, die quadratische Funktion

$$y = -58,20x^2 + 611,37x + 953,78$$

beschreibt den vermuteten Zusammenhang zwischen der Länge der Quadratseite x und dem Volumen V (hier als y bezeichnet).

Eine Kontrolle mit • [Y=] bestätigt die Speicherung der Ausgleichskurve. • [GRAPH] wechselt ins [GRAPH]-Fenster und Sie können das Ergebnis bewundern. Verwenden Sie neuerlich das Trace - Werkzeug, um den optimalen Wert - den höchsten Punkt der Parabel - zu finden.

© Vielleicht wissen Sie noch, wie man die x-Koordinate f
ür den Scheitel einer Parabel findet:

$$x_S = \frac{-b}{2a}$$

Daher: $x_S \approx -611.3731/(2*(-58.2043)) \approx 5.2520$.

Das F5 Math Menü bietet Ihnen die Möglichkeit, höchste (und tiefste) Punkte eines Funktionsgrafen innerhalb eines frei wählbaren Intervalls suchen zu lassen. (Diese Punkte nennt man zusammenfassend "Extremwerte".) Nützen Sie diese Möglichkeit. Sie sollten dann das folgende Ergebnis finden:

© Sind Sie mit dem Ergebnis zufrieden?

Stepsen version Sie mit Ihrer Tabelle, ob Sie nicht doch ein "besseres" Ergebnis durch bloßes Experimentieren gefunden haben.

Um ganz sicher zu gehen, vergrößern Sie den interessanten Bereich mit F2 1: ZOOmBox.

Da liegen Sie offensichtlich noch ganz schön falsch. Der Unterschied ist zwar nicht so erheblich wie die Vergrößerung glauben machen will, aber eine Verbesserung des Ergebnisses sollte schon noch möglich sein.

- ☺ Wo wäre anzusetzen?
- © Könnten zusätzliche Datenpaare das Ergebnis verbessern?
- Oder vielleicht sollten Sie eine andere Ausgleichslinie wählen? Wenn QuadReg schon ganz gut war, dann sollten Sie vielleicht auch einmal Cubi cReg versuchen. (Was wird hier geschehen?)

-1 - 1	P1(F2 F3 F3 F4 F5) F1(STAT VARS	767 57
DATA	x: c1 y=a·x ³ +b·x ² +c·x+d	
1 2	10. b = -140. 10. c = 1125.	
3 4	10. d =6.E ⁻¹⁰ 9.6 R ² =1.	\square
5	8.9	\square
7	7.9 (Enter=OK)	
<u>с1,</u> SHUTTI	Title="x:" .E RAD AUTO FUNC	

- ③ Was fällt am Ergebnis auf?
- □ Gestalten Sie mil F6 Styl e den Graph von y1(x) punktiert (2: Dot) und y2(x) stark ausgezogen (4: Thi ck).

Gefällt Ihnen dieses Ergebnis besser?

Suchen Sie auch hier den optimalen Wert für x aus dem Graphen.

Damit haben Sie ein Ergebnis gefunden, mit dem Sie zufrieden sein können. Benützen Sie nochmals F2 1: ZoomBox, um diese Aussage zu bestätigen.

© Von wo stammt der Kurventeil am rechten Rand des Bildes??

Die Mathematik bietet aber auch die Möglichkeit, dieses Problem analytisch anzugehen und zu einer exakten Lösung zu gelangen.

Dazu braucht man zuerst eine mathematische Formulierung der Aufgabe.

 \odot Suchen Sie eine Formel, die Ihnen für jeden willkürlich gewählten Wert *x* für die Quadratseite das Volumen *V* der entstehenden Schachtel angibt.

$$V = (45 - 2x) \times (25 - 2x) \times x$$

□ Legen Sie im Funktionen Editor [Y=] die Volumsfunktion als y3(x) fest oder definieren Sie y3(x) im Home Screen. Wenn Sie dann ins Grafikfenster wechseln, wird y3(x) zusätzlich gezeichnet.

- Some Sie einen Unterschied erkennen? Wieso nicht? Offensichtlich deckt sich y3(x) mit einem schon vorhandenen Graphen.
- ☺ Multiplizieren Sie den Term für $V = (45 2x) \times (25 2x) \times x$ aus.

Haben Sie diesen Term schon früher gesehen?

F17700 F27 - Algebra Calc Other PrgmIO Clea	ar a-z)
■(45 - 2·x)·(25 - 2·x)·x → y3(x)	Done
• expand(y3(x)) $4 \cdot x^3 - 140 \cdot x^2$	+ 1125·×
expand(y3(x))	
SHUTTLE RAD AUTO FUNC 2/10	

(R² nennt man "Bestimmtheitsmaß".)

F1770 F2 ▼ ← Alge	braCalcOt	her Prg	; mIO[Clear	a-z
■(45 - 2·×)·(25 − 2·×)	l∙×⇒y3(X)	Done
<pre>expand(y</pre>	3(x))	4·× ³ -	140·× ² + :	1125·×
∎fMax(y3(×), ×) × < 1	2.5	× = <u>-5 ·(√6:</u> €	<u>ī - 14)</u>
∎fMax(y3(x), x) x < 1	2.5	×=5.158	312472
fmax(y3	(x), x)	x<12.	5	
SHUTTLE	RAD AUTO	F	UNC 4/10	

Die kubische Regression scheint den Sachverhalt - bis auf rechnerbedingte Rundungsfehler - genau zu treffen. Für Leute, die sich in der Statistik auskennen ist der Wert für $R^2 = 1$ ein mehr als deutlicher Hinweis für die perfekte Anpassung durch die entsprechende Regressionskurve. Vergleichen Sie den Wert für R^2 bei der quadratischen Regressionslinie.

Die Funktion fMax(y3(x), x) liefert jene Stelle x, die den maximalen Wert für den Term y3(x) = V liefert. Mit dem with-Operator [1] müssen Sie den Bereich zur Suche des Maximums sinnvoll einschränken. Da man weiß, dass die Quadratseite höchstens 12.5cm lang sein darf, ergänzen Sie das Kommando dementsprechend.

Der Wert x = 5.1581... überrascht zwar nicht, aber

Die Differentialrechnung ermöglicht eine exakte Suche nach den Extremwerten. Und überraschenderweise werden zwei "optimale" Werte für *x* geliefert. Sie können wieder x = 5.1581..., aber zusätzlich den Wert x = 18.175... finden. Um diesem Sachverhalt nachzugehen, ändern Sie bitte die [WINDOW]-Werte folgendermaßen:

F1 THO F2 F Calc Other PrgmIO Clear a-z $4 \cdot \times^3 - 140 \cdot \times^2 + 1125 \cdot \times$ expand(y3(x)) -5·(<u>51</u> - 14) ■ fMax(y3(x), x) | x < 12.5 6 fMax(y3(x), x) | x < 12.5</pre> x = 5.15812472 • solve $\left[\frac{\alpha}{\sqrt{2}}(y_3(x)) = 0, x\right]$:=18.17520806 or x=5. solve(d(y3(x),x)=0

xmin= -5. xmax=25.			
ymin=-2000. umax=3000.			
yscl=100. xres=2.			
SHUTTLE	RAD AUTO	FUNC	

An der Stelle x = 18.175... findet sich das "Minimum" der Funktion. Diese Lösung ist natürlich nur von theoretischem Interesse. Aber der Graph liefert auch eine Erklärung für den Kurventeil am rechten Bildrand von zuerst. Außerdem können Sie sich sicherlich an die "merkwürdigen" Bilder des Schachtelnetzes erinnern, die negative und auch riesige positive Volumsinhalte geliefert hatten.

Damit ist diese Untersuchung beendet. Bevor Sie das nächste Problem behandeln, sollten Sie die Daten sichern, wenn Sie diese nochmals verwenden wollen. Sysdata wird sicherlich ein anderes Mal Verwendung finden. Öffnen Sie nochmals den Data/Matri x Edi tor, und speichern Sie die Datentabelle unter einem geeigneten Namen.

Löschen Sie anschließend sysdata im Folder MAI N.

Problem 2: Die Strebe

Eine Mauer mit dem Querschnitt OACB soll die Strebe A'B' im Punkt C unterstützen. Oberer und unterer Teil der Strebe werden aus unterschiedlichen Materialien gefertigt und verursachen daher auch unterschiedliche Kosten pro Meter. Der obere Teil kostet ATS 250.- und der untere ATS 150.- / Meter. In welcher Entfernung x vom Punkt A ist der Fußpunkt der Strebe A' anzubringen,

so dass die Kosten für die Strebe möglichst niedrig werden?

Sertigen Sie eine maßstabsgetreue Zeichnung an und versuchen Sie, eine möglichst kostengünstige Aufstellung für die Strebe zu finden. Versuchen Sie, mit der Applikation APPS 8: Geometry auf dem TI-92 ein Modell des Problems zu konstruieren. Der Punkt A' ist auf der Horizontalen verschiebbar anzulegen. Der Abstand x und die Gesamtkosten K sollen abgelesen werden und in eine Data-Tabelle übertragen werden können.

Das dynamische Bild strebe. 92a kann von der Diskette mittels GraphLink auf den *TI*-92 übertragen werden. Konstruktionshinweise finden sich im Anhang.

Bewegen Sie den Cursor mit dem Cursor Pad zum Punkt A', ergreifen Sie mit i diesen Punkt und führen Sie ihn auf einer Strecke, die auf der Horizontalen vorgegeben ist. Mit der Tastenkombination • • • • werden die Datenpaare für den Abstand x und die dabei entstehenden Kosten K in die Datentabelle sysdata übertragen. (sysdata muss vorher im Folder MAI N gelöscht worden sein, sonst werden die neuen Daten an schon bestehende aus einer früheren Bearbeitung angehängt!) Natürlich kann man theoretisch den Punkt bis ins Unendliche bewegen. Das bringt aber erstens für das Ergebnis keine wesentlichen Erkenntnisse, da die Kosten bei einer derart langen Strebe sicherlich zu hoch werden und zweitens ist die Begrenzung der Bewegungsmöglichkeiten für A' für die Animation notwendig.

□ Die Animation lässt sich mit dem Sammeln der Daten kombinieren. Gehen Siezuerst mit F6 7: Collect Data zu 1: Store Data und aktivieren Sie anschließend mit F7 die Option Animation. Der Schirm sollte nun so aussehen.

Beachten Sie die Menüleiste!

Führen Sie den Cursor zum Punkt A', und drücken Sie dann zweimal die \bigcirc -Taste. Mit <u>ENTER</u> wird die Animation angehalten und fortgesetzt, \bigcirc beendet sie. Lassen Sie den Punkt A' einmal die Strecke durchlaufen. Für weitere Animationen schalten Sie Col I ect Data wieder aus. Versuchen Sie, sich jenen Wert *x* zu merken, für den die Strebe am billigsten wird. Nun soll, ganz ähnlich wie im ersten Problem, ein Streudiagramm der gesammelten Daten erzeugt und eine geeignete Regressionslinie gefunden werden. Öffnen Sie über APPS 6: Data/Matrix Editor die Datei sysdata im Folder MAIN. Mit F2 Plot Setup und F1 Define legen Sie die Parameter für die Darstellung fest.

	Plot ²	Setup Ce	3 e11 Head	der Calo	-Utils	fzat)
DATA	×=	K=				
	c1	c2	сЗ	c4	c5	
16	49.697	9092.3				
17	48.345	8901.5				
18	46.993	8711.5				
19	45.641	8522.2				
20	44.290	8333.9				
21	42.938	8146.5				
22	41.586	7960.1				
r22c1=41.58620689655						
SHUTTL	.Ε	RAD AUTO		FUNC		

f T	sysdata P1	lot 1
L.	Plot Type	Scatter > 머
1	Mark	Square>
1	×	c1
i	y	<u>c2</u>
1	Misty Busket Midth	
1	Use Freq and Catego	pries? NU→
24	S S Constanting and the second s	
2	 A state of the second se	
4	(Enton-SOUE)	
$\mathbf{P}'_{\mathbf{N}}$	CEncer-SHVE/	
SHU	TTLE RAD AUTO	FUNC

Wählen Sie geeignete [WINDOW]-Werte und stellen Sie mit • [GRAPH] das Streudiagramm dar. Im Datenblatt können Sie nun wieder mit F5 Cal c die Werte in den beiden Spalten c1 und c2 über eine quadratische Funktion - 9: QuadReg - und eine kubische Funktion - 3: Cubi cReg - in Verbindung bringen.

Wie die Ergebnisse und die Abbildungen zeigen, sind diese beiden Näherungskurven nicht recht überzeugend, wenn auch Ihre Kurven anders aussehen können. Deren Gestalt hängt nämlich von den vorhandenen Datenpaaren ab.

Wählen Sie nach eigenem Gutdünken eine weitere Regressionslinie aus. Ist das Ergebnis besser geworden? Mit y1(x), y2(x) und y3(x) sind nun 3 Kurven im [Y=]-Editor festgelegt.

Das Bild daneben zeigt 3 Näherungskurven für eine etwas andere Sammlung von Datenpaaren.

(strebres. 92c auf der Diskette!)

 \odot Versuchen Sie nun eine Formel für die Kosten der Strebe zu finden, die nur mehr vom Abstand AA' = x abhängt.

Die zweimalige Anwendung des Pythagoräischen Lehrsatzes führt sofort zu dieser Formel, in der vorerst aber zwei Variable x und y (= BB') vorkommen. Da die beiden Dreiecke $\Delta AA'C$ und $\Delta BCB'$ ähnlich sind, gilt die Proportion

$$y: 5 = 15: x,$$

aus der sich unschwer *y* ausdrücken lässt. [ANS] kopiert das letzte Ergebnis in die Edit-Zeile und mit dem [1] -Operator ist die Substitution sofort durchgeführt, aber dabei entsteht ein ganz unerwarteter Absolutbetrag.

© Wieso entsteht dieser Absolutbetrag?

Da Sie sicher sein können, dass *x* positiv sein muss, "teilen" Sie das auch noch dem *TI*-92 mit und erhalten die gewünschte Formel. Jetzt sollte auch klar sein, warum die angewendeten Regressionsverfahren nicht so von Erfolg begleitet waren?

\Box Speichern Sie diese Formel als Funktion von *x* unter dem Namen strk(x).

Bevor Sie diese Kurve grafisch erkunden, sollen Sie sich dem Problem dieses Mal zuerst numerisch widmen. Gesucht ist eine näherungsweise Lösung für die minimalen Kosten. (Auf 2 Dezimalstellen genau für den Abstand x.)

Um die entstehende Tabelle nicht mit den Werten für die, noch immer im [Y=]-Editor gespeicherten Funktionen zu überladen, werden diese Funktionen zuerst deaktiviert. □ Wechseln Sie mit \bullet [Y=] in den Editor und schalten Sie y1(x) - y3(x) mit F4 aus:

Hier ist y1(x) schon ausgeschaltet, der nächste Tastendruck auf F4 deaktiviert auch y2(x), usw.

Für die Wertetabelle von strk(x) setzen Sie noch über ● [TblSet] geeignete Startwerte und erhalten mit ● [TABLE] schließlich die erste Tabelle. Suchen Sie das Minimum der Kosten,

dann finden Sie nachfolgendes:

Zoom Trace ReGraph Math Draw - 1
TABLE SETUP
tblStart: 8
stbl: 1.
Graph <-> Table: OFF→
Independent: AUTO→
(Enter=SAVE) (ESC=CANCEL)

F1790 F2 F1F90 Setup	ि िक्षी से Header	Del ¹⁷ FoolIm	2 Pos/
×	1		
8.00000000	5206.25000		
9.00000000	5053.49164		
10.0000000	4957.63300		
11.0000000	4903.91984		
12.0000000	4882.38223		
13.0000000	4886.01434		
14.0000000	4909.73237		
15.0000000	4949.74747		
exp1(x)=	4882.382	2310427	
THUTTLE	RAD AUTO	FUNC	

Es ist nicht unerwartet (Graph!!), dass das Minimum der Kosten für einen *x*-Wert zwischen 11 und 13 angenommen wird.

☺ Führen Sie eine so genannte "dezimale Suche" durch und verfeinern Sie die Tabelle, indem Sie für ∆tbl den Wert 0.1 angeben. Der Startwert ist natürlich 11.

Setup	ः िक्षी स Header	Deff Powlin	ê Posel
×	1		
12.3290000	4881.07957		
12.3300000	4881.07954		
12.3310000	4881.07952		
12.3320000	4881.07953		
12.3330000	4881.07957		
12.3340000	4881.07962		
12.3350000	4881.07970]
12.3360000	4881.07981]
exp1(x)=	4881.079	5247564	•
SHUTTLE	RAD AUTO	FUNC	

Das führt nach wenigen Schritten zur gewünschten Genauigkeit ($\Delta tbl = 0.01,$)

Das numerische Ergebnis lautet demnach:

Der Abstand x sollte 12,33m sein. Dann betragen die Kosten K = 4881.08 ATS.

Betrachten Sie nochmals den Graphen und suchen Sie mit dem Trace-, bzw Math-Tool das Minimum der Kosten. Passt das Ergebnis ins Gesamtbild? Nun gibt es auch zu diesem Problem eine exakte, analytische Lösung, die sich mit einiger Rechenfertigkeit auch händisch finden lässt. Wir wollen die Strategie vorgeben, überlassen die rechnerische Durchführung aber dem *TI*-92.

Sie können der Vorgangsweise im Home-Screen folgen oder aber ein interaktives Script laden, das Sie durch diesen Teil des Problems führt. Eine genauere Beschreibung finden Sie am Ende dieses Problems.

Die Differentialrechnung lehrt, dass - unter bestimmten Bedingung, die oft erfüllt sind - Extremwerte als Nullstellen der ersten Ableitungen der vorliegenden Funktion zu finden sind.

② Versuchen Sie, die entstehende Wurzelgleichung mit der Hand zu lösen. Sie können sicher sein, dass die Gleichung eine Lösung hat!

	F2▼ gebraCalcOt	r ner PrgmIO Clear a-z…)		ebra Calc Other	PrgmIO Clear a-z
•	× + 150	J·J×++225→strk(x)	ux.	·	
	^	Done		-1250·√× ² + 225	$+\frac{50\cdot(3\cdot\times+25)}{50\cdot(3\cdot\times+25)}=0$
• Graph	strk(x)	Done		× ²	-3
■ <u>d</u> ×(str	^k(x)) = 0		■ solve	$\frac{l}{x}(\operatorname{strk}(x)) = 0,$	$\times = 5 \cdot 15^{1/3}$
	-1250 · × ² +	$\frac{225}{225} + \frac{50 \cdot (3 \cdot \times + 25)}{50 \cdot (3 \cdot \times + 25)} = 0$	 approx(; 	×=5·15 ^{1/3})	× = 12.33106037
	ן	$\sqrt{x^2 + 225}$	strk(12.	.33106)	4881.07952471
d(str]	κ(x),x)=0		strk(12	2.33106>	
SHUTTLE	RAD AUTO	FUNC 6/10	SHUTTLE	RAD AUTO	FUNC 9/10

Sie erhalten wieder die vermutete Lösung, diesmal allerdings exakt.

Die Differentialrechnung lehrt aber auch, dass ein "Minimum" dann vorliegt, wenn der Wert der zweiten Ableitung an der entsprechenden Stelle *x* positiv ist. Dieser Nachweis wird dann notwendig sein, wenn kein Graph das rechnerische Ergebnis untermauern kann.

F17700 F2▼ ▼ Algebra Calc Other Pr	FS SgmIO Clear a-z
-1250 · [x ² + 225]	$\frac{50 \cdot (3 \cdot \times + 25)}{50 \cdot (3 \cdot \times + 25)} = 0$
ײ	√× ² + 225
• solve $\left(\frac{d}{d\times}(\operatorname{strk}(X)) = 0, X\right)$	×=5.15 ^{1/3}
■ approx(x = 5 · 15 ^{1/3})	×=12.33106037
strk(12.33106)	4881.07952471
DelVar y1,y2,y3,st	rk
SHUTTLE RAD AUTO	FUNC 8/10

 Die zweite Ableitung erhält man mit dem Befehl: ¶((strk(x), x, 2). Weisen Sie nun nach, dass die zweite Ableitung von strk(x) an der Stelle x = 12.33 positiv ist!

Zum Abschluss der Untersuchung sollten Sie die verwendeten Variablen aus dem Speicher löschen, außer Sie wollen die Funktionen zu Demonstrationszwecken oder aus anderen Gründen noch behalten. (Die Amerikaner bezeichnen diesen Vorgang gerne als *house keeping*.)

Das Script Strbtxt führt Sie interaktiv durch den Differentialrechnungsteil dieser Aufgabe. Sie brauchen dann - fast - nichts mehr einzugeben. Diese Scripts sind auch eine hervorragende Möglichkeit, behandelte Probleme zu dokumentieren. Laden Sie das Script wie die nächsten Bilder zeigen:

Es öffnet sich eine Text-Datei, bei der alle Absätze von einem Doppelpunkt eingeleitet werden. Es gibt aber auch Teile, bei denen vor dem Doppelpunkt noch ein "C" steht. Dieses "C" bedeutet Command. Die so markierten Textteile sind ausführbare - exekutierbare - Befehle, die über F4 Execute zur Ausführung gebracht werden. Setzen Sie den Cursor irgendwo in den ersten "C"-Block und drücken Sie F4 . Folgen Sie ganz einfach den Aufträgen und beachten Sie die Kommentare und Erklärungen. Wenn es notwendig ist, von einem Fenster zum anderen zu "shutteln", dann tun Sie dies 2nd [.

F1770) F27 F37 F4 F17700 F27 CommandViewExecuteFind	
Die Strebe Der Schirm wird eingestellt	
een", "Top-Bottom", "Split 1 App", "Ho ,"Split 2 App", "Text Editor", "Split	me" Sc
reen Ratio","2:1")) die Formel fuer die Kosten C:150J(15^2+x^2)+250*J(5^2+y^2)	
daneben gilt die Bedingung:	
:Loese bêd nach y auf und setze in	а
SHUTTLE RAD AUTO FUNC	

	F2* Comma	and View E>	ecute	Find) (
.	M	CII Connecte II		- 4 4 11	UC-144 N
• seti ("S	plit	Screen Ra	"Fun tio"	"1:1"	"Split▶
So die	For	Ratio"," mel fuer	2:1")) die Ko) Disten	
C: 156 Shuttle	м (15	~2+X^2)+2 RAD_AUTO	50*1(5	runc	

Das sind die ersten paar Zeilen des Scripts strbtxt:

(strbtxt. 92t findet sich im Anhang und auf der Diskette).

```
:Die Strebe
:Der Schirm wird eingestellt
C:setMode({"Graph", "Function", "Split Screen", "Top-
Bottom", "Split 1 App", "Home", "Split 2 App", "Text Edi-
tor", "Split Screen Ratio", "2:1"})
:die Formel fuer die Kosten
C:150§(15^2+x^2)+250*§(5^2+y^2)
:
:daneben gilt die Bedingung:
:y/5=15/x
:Loese bed nach y auf und setze in ans(1) ein
:
C:ans(1)|y=75/x
:
:der Absolutbetrag stoert. Ursache?
:x ist sicher positiv! Daher
C:ans(1)|x>0
```

	2 * MandViewEx	F4 F5 ecute Find	
■ setMod ("Spli ■ 150 \15	e({"Graph" t Screen Ra 5 ² + x ² + 250 150 ·	"Function" tio" "1:1" $\sqrt{5^2 + y^2}$ $\sqrt{x^2 + 225 + 25}$	"Split♪ "Split♪ 0.√y ² + 25
C 150√()	ormel fuer c .5^2+x^2)+25	lie Kosten 0*√(5^2+y^2))
SHUTTLE	RAD AUTO	FUNC	

Das Script kann von Schülern (oder Schülergruppen) im individuellen Tempo durchgearbeitet werden. Zusätzliche Arbeitsaufträge lassen sich leicht einbauen. Man kann jederzeit aus dem "Leitfaden" aussteigen und nach einem "Seitensprung" in den Home Screen oder ins Grafikfenster mit dem Script weiterarbeiten.

Scripts eignen sich auch als genau überlegte Vorbereitungen für motivierende Einstiege in neue Themenkreise oder Zusammenfassungen.

Schüler sollten dazu angehalten werden, eigene Scripts zu erstellen und diese auch zu präsentieren.

Sollen die einmal gesammelten Daten behalten werden, dann müssen Sie unter einem anderen Namen gespeichert werden. Sysdata ist anschließend zu löschen. Auf der Diskette finden sich Musterdaten zu diesem Problem unter dem Namen strebres. 92c.

Problem 3: Das Rechteck im Trapez

Dem gleichschenkeligen Trapez (a=4, c=3, h=1.5) ist ein Rechteck einzuschreiben, dessen eine Seite auf der Basis des Trapezes liegt. Suche jenes Rechteck, das

- a) den größten Flächeninhalt,
- b) den größten Umfang

aufweist.

Die Schüler sollen zuerst eine eigene Skizze des Sachverhalts erzeugen und die Abhängigkeit von Flächeninhalt und Umfang von einer Größe erkennen. Eventuell kann auch eine Wertetabelle aufgestellt werden.

Laden Sie die Figur trapez mi APPS 8:Geometry. Die linke obere Ecke des Rechtecks B' kann auf der rechten Trapezseite RQ bewegt werden. Ergreifen Sie den Punkt tund führen Sie ihn n u von einem Eckpunkt des Trapezes zum anderen. Mit der Tastenkombinati D übertragen Sie gleichzeitig die jeweils angezeigten Werte für die Rechteckshöhe x, den Flächeninhalt A und den Umfang U in die Datentabelle sysdata im Folder MAI N. Vergessen Sie aber nicht, vorher sysdata zu löschen.

Die geöffnete Datentabelle sysdata könnte so ähnlich aussehen:

			Plot 9	Setup Ce	3 F4 ell Head	der Calo	Jutiis	itat
/		DATA	<u>×=</u>	A=	U=			
· · · · / · · · poin · \· · · U=8.74cm ·	·	1	c1 - 1724	- 6698	8.115	C4	100	{
		2	2759	1.053	8.184			1
		3	.3448	1.3	8.23			
1.50cm		5	<u>.4483</u> .4828	1.659	8.322			1
		ĕ [.6207	2.226	8.414			1
		7	.7241	2.547	8.483			
/· ··· · · · · · · · · · · · · · ×=1.10cm ·		r1c :	1 = .17	24137	<u>93103</u>	345		
ISHUTTLE A DEG EXACT FUNC		SHUTTLI	E	RAD EXAC	T	FUNC		

Zum Unterschied von vorhin soll nun zuerst die analytische Problemlösung erfolgen. Beginnen Sie mit der Suche nach dem maximalen Flächeninhalt des eingeschriebenen Rechtecks.

Der Flächeninhalt ergibt sich aus x * l mit x = BB' und l = A'B'. Die beiden Variablen x und l stehen über eine Proportion, die sich aus ähnlichen rechtwinkligen Dreiecken ergibt, in Beziehung:

$$BB' : BQ = \frac{3}{2} : \frac{PQ - RS}{2} \implies x : \frac{4-l}{2} = \frac{3}{2} : \frac{1}{2}$$

- © Suchen Sie die ähnlichen Dreiecke in der Skizze!
- Diese Proportion ist nach einer Variablen aufzulösen und für diese anschließend in der Flächenformel zu substituieren. So gelangen Sie zu einer "Formel" für den Flächeninhalt, der sich als Funktion der einen verbleibenden Variablen darstellt.

Die Flächenfunktion ist quadratisch, daher ist ihr Graph eine - hier nach unten geöffnete -Parabel. In ihrem höchsten Punkt ist offensichtlich der größte Funktionswert und damit das gesuchte Flächenmaximum zu finden.

Die Lage des Scheitels der Parabel $y = a x^2 + b x + c$ lässt sich wieder über die Formel - b/(2*a) finden, oder man nützt die Tatsache, dass der Scheitel aus Symmetriegründen genau zwischen den Nullstellen der Parabel liegen muss.

Service Sie zeros(-2x²/3 + 4x, x) und bestimmen Sie den Mittelwert der beiden Werte.

Damit haben Sie also eine Lösung gefunden. Für die Rechteckshöhe x = 3 ergibt sich der maximale Flächeninhalt A = 6. Sind Sie damit zufrieden, oder haben Sie irgendwelche Bedenken?

Betrachten Sie einmal die grafische Darstellung der Daten an:

- □ Natürlich wählen Sie zur Kontrolle die quadratische Regression und finden mit $R^2 = 1$ die Bestätigung, dass die Punkte tatsächlich auf der Parabel liegen.
- © Erklären Sie die Werte für a, b und c im ausgegebenen Fenster STAT VARS.

Da passt ja alles, bis auf die "Kleinigkeit", dass es das Rechteck mit der Höhe x = 3 gar nicht geben kann, aber das haben Sie sicher schon herausgefunden. Gibt es daher kein Maximum?

□ Zeichnen Sie zusätzlich die Begrenzung des Definitionsbereichs $0 \le x \le 1.5$ für die Variable x ein:

Die Vertikale x = 1.5 kann mittels "Parameterdarstellung" dieser Geraden eingefügt werden. Lassen Sie die Ortslinie aller Punkte mit den Koordinaten (1.5 | t) zeichnen, wobei t alle Werte für $-3 \le t \le 10$ durchläuft. Für t wird eine - hier beliebige - Schrittweite von 1 angenommen.

F17700 F2▼ F3▼ F4▼ F5 ↓ Algebra Calc Other PrgmIOClea	ra-z…
$=\frac{-4}{2\cdot -2/3}$	3
$=\frac{-2 \cdot x^2}{3} + 4 \cdot x x = 3$	6
■DrawParm 1.5,t,-3,10,1	Done
$= \frac{-2 \cdot x^2}{3} + 4 \cdot x x = 1.5$	9/2
-2*x^2/3+4*x1x=1.5 SHUTTLE RAD EXACT FUNC 6/10	

Im Definitionsbereich ist die Parabel streng monoton zunehmend, daher wird der größte Funktionswert im rechten Endpunkt des Intervalls - d.h., an der Stelle x = 1.5 - angenommen.

Der größte Flächeninhalt ergibt sich da mit 9/2= 4.5 cm².

Extremwerte dieser Art, die nicht richtig aus einem Hoch- oder Tiefpunkt entstehen, nennt man im Gegensatz zu den lokalen Extrema **Randextrema**.

Auch bei der Frage nach der Figur mit dem größten Umfang ergeben sich Schwierigkeiten.

Die analytische Lösung führt uns zu einer Funktion, die gar keinen Hochpunkt hat - zu einer linearen Funktion.

Da die entstehende Funktion ebenfalls streng monoton steigend ist, können Sie zu recht vermuten, dass auch hier ein Randextremum vorliegt.

F1770) F27 AlgebraCalcOtherPr	^{F5} gmI0[Clear a−z…]
$=\frac{2^{1}x}{3} + 4 \cdot x x = 3$	6
■DrawParm 1.5,t,-3,10,1	l Done
$=\frac{-2 \cdot x^2}{3} + 4 \cdot x x = 1.5$	9/2
■ "Umfang:"	"Umfang:"
$= 2 \cdot x + 2 \cdot 1 1 = \frac{-2 \cdot x}{3} + 4$	$\frac{2 \cdot \times}{3} + 8$
2x+21 1=-2x/3+4	
SHUTTLE RAD EXACT	FUNC B/10

□ Erzeugen Sie über F2 Pl ot Setup und F1 Define aus der Datentabelle ein zusätzliches Diagramm für die gesammelten Umfangswerte. Vergessen Sie dabei aber nicht, den Pl ot 2: anzuwählen, sonst würden Sie das erste Diagramm überschreiben. Beachten Sie bei der grafischen Darstellung, dass Sie eventuell die [WINDOW]-Werte anpassen müssen.

Als Näherungskurve bietet sich natürlich Li nReg an. Vergleichen Sie Ihre Zwischenergebnisse mit den folgenden *TI*-92 Bildern.

Jetzt können Sie direkt die Lösung ablesen. Der größte Umfang ergibt sich ebenfalls für die Höhe x = 1.5cm und beträgt $U_{max} = 9$ cm

Sun eine zusätzliche Aufgabe: Lassen Sie die Daten automatisch während einer Ani mati on (F7) aufzeichnen. Zur Erinnerung: unter F8 muss das Collect Data Symbol sichtbar sein. Definieren Sie die Plot 1 und Plot 2 nochmals. Dann sollten Sie ein ähnliches Bild wie hier gezeigt vorfinden.

- Streudiagramm.
- Sersuchen Sie die Gleichungen der Trägerkurven dieser zusätzlichen Punkte zu finden.

▌▝▀▋▓▋▀▋▝▝▋▂▋○▋・▝▋▁▋	
·····/································	
· · · · / · · 3.00cm · \· · · U=10.30cm ·	A', U=9.54cm .
····★★-····	···· /} ₽₹ ₹-····
· · · /· · · · · · · · · · · · · · · ·	· · · /· · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	
4.00см x=0.69см .	· · /· · · · 4.00sm · · · · ×=2.31cm ·
SHUTTLE @ DEG EXACT FUNC	SHUTTLE @ DEG EXACT FUNC

Die beiden Bilder können Hinweise zur Beantwortung der Fragen geben.

Problem 4: Kosten und Erlöse bestimmen den Gewinn

Die Analyse der Produktionsgesamtkosten K für ein bestimmtes Produkt ergab für unterschiedliche Produktionsmengen x die folgenden Gesamtkosten:

Menge x	10	20	30	40	50	60	70	80	90
Kosten K	160	188	210	220	235	255	284	330	390

Der Produzent hat fast das Monopol auf dieses Produkt, so stehen Verkaufspreis und abgesetzte, bzw. angebotene Menge in einem Zusammenhang, der durch die Nachfragefunktion p(x) beschrieben wird. Durch Marktforschung versuchte man die Verkaufspreise p zu ermitteln, zu denen bestimmte Mengen x abgesetzt werden könnten.

Menge x	10	20	30	40	50
Preis p	18	14	10	7	4.5

Aus diesen Daten ergeben sich viele Aufgabenstellungen, die wohl darin gipfeln, wie der größte Gewinn zu erzielen sei.

Dazu müssen Sie ein geeignetes mathematisches Modell heranziehen, das dann grafisch und/oder numerisch und/oder vielleicht auch analytisch bearbeitet werden kann.

Suchen Sie ein Modell für die Gesamtkostenfunktion.

Erstellen Sie eine Tabelle der Gesamtkosten für $0 \le x \le 50$ mit der Schrittweite 5.

Welche Bedeutung hat K(x=0)?

Interpretieren Sie den Verlauf der Kostenkurve.

Bestimmen Sie möglichst genau den Bereich, in dem die Produktionskosten am langsamsten zunehmen.

Auch ohne Hilfsmittel würde man wohl zuerst ein Diagramm entwerfen, um sich die Daten zu veranschaulichen.

□ Gehen Sie genauso vor. Die Daten werden mit dem Data/Matrix Editor in eine neue Datei, der Sie etwa den Namen prob4 geben können, geschrieben.

(11, 0)	APPLICATIONS	F6
- <u>-</u>	1:Home 2:Y= Editor 3:Window Editor 4:Graph 5:Table 6:UeterNetrix Editor 7:Program Editor 8:Geometry 9:Text Editor	Clear a-z 1:Current 2:Open 3:New
SHUTTLE	RAD EXACT FUNC	0/10

F	lot Setup Cell Header Calc Util Stat
6	NEW
	Type: Data→ Folder: <u>shuttle→</u> Variable: <u>prob4</u> Kaw domension(<u>i</u> Cal domension(<u>i</u>
((Enter=OK) (ESC=CANCEL)
SHUTTLE	RAD EXACT FUNC

Dann bereiten Sie das Streudiagramm vor (vorerst werden nur die Kosten berücksichtigt):

T-	Plot S	5etup Ce	3 911 Head	der Cal	-Utiis	[at]
DATA	Menge	Kosten	Menge	Preis		
	c1	c2	сЗ	c4	c5	
1	10	160	10	18		
2	20	188	20	14		
3	30	210	30	10		
4	40	220	40	7		
5	50	235	50	9/2		
6	60	255				
7	70	284				
c1,	Title	="Men	ge"			
SHUTTL	E	RAD EXAC	T	FUNC		

IFY.	shuttle\prob	4 Plot 1
Ц	Plot Type	Scatter > 브
1.1	Mark	Box→
H	×	c1
151	y	c2
ΞŦ.	Hist. Cocket Width	1
Ă	Use Freq and Catego	pries? NO→
Isl.	¥7€4	
6	08889009-010-010-	
7	<u>(no leste - Cat</u> egoria na	<u> </u>
5	(Enter=SAVE)	
SHU	TTLE RAD EXACT	FUNC

© Wählen Sie geeignete [WINDOW]-Werte und betrachten Sie das Scatter-Diagramm.

Die Betriebswirtschaftslehre spricht im Zusammenhang mit der "Gesamtkostenfunktion" gerne von einem S-förmigen Idealverlauf. Kubische Funktionen zeigen diesen Verlauf, daher wählen wir die kubische Regressionslinie als Näherungskurve.

Speichern Sie die Kostenfunktion zusätzlich als gkos(x). Sie können nachher diese Funktion leichter ansprechen.

F17770 F2▼ ▼ ← Algeb	ra Calc Ot	ther Pr	F5 gmI0Cle	er a-z
∎y1(x)→gk	os(x)			Done
A1(x)→aj	(x) so			
SHUTTLE	RAD EXACT		FUNC 1/10	

Erzeugen Sie eine Tabelle der Gesamtkosten mit einer Schrittweite von 5 Mengeneinheiten, um sich einen ersten Überblick zu verschaffen.

Zuerst legen Sie mit \bigcirc [TblSet] die Tabellenparameter - tbl Start (= Anfangswert) und \triangle tbl (= Schrittweite) - fest.

(F1 •	Plot Setup Cell Header	CalcUtilStat
DA	TABLE SETUP	<u> </u>
1	tblStart: 0.	
2	⊿tbl: 5	
3	Graph <-> Table: OFF	÷
4	Independent: AUTO→	
ĕ	(Enter=SAVE)	(ESC=CANCEL)
7	70 284	
r	1c1=10	
SH	UTTLE RAD EXACT F	UNC

Setup	ि मि ि हो से Header	Del ^f Paol In	î Post
×	y1		
0.0000	117.9206		
5.0000	141.1909		
10.0000	160.3131		
15.0000	175.8865		
20.0000	188.5101		
25.0000	198.7831		
30.0000	207.3045		
35.0000	214.6735		
y1(x)=11	7.920634	92062	
SHUTTLE	RAD EXACT	FUNC	

Die Gesamtkosten nehmen offensichtlich unterschiedlich rasch zu. Sie sollen nun herausfinden, wo sie am langsamsten wachsen. Dazu stellen Sie in der nächsten Spalte der Tabelle die Kosten für die jeweils letzten 5 Produktionseinheiten dar: y2(x):

	Edit 7 A	IlStyle⊚∛,	
▲PLOTS1 Plot 2: √Plot 1:Ŀ	<u>-</u> 🗆 x:c1 y:c2	_	
√y1=7.988 √y2=gkos()	2154882174 ×) – gkos(×	⊧ε-4·× ³ +09 −5)	49422799
937 94= 95=			
90- 97= 98=			
<u>93(x)=</u>		P111.12	

F1 70 F2 Set	up ြေး i He	Pader (2012)	Powlin ⁶ P	<u></u>
×	y1	y2		
15.00	175.89	15.57		
20.00	188.51	12.62		
25.00	198.78	10.27		
30.00	207.30	8.52		
35.00	214.67	7.37		
40.00	221.49	6.82		
45.00	228.35	6.86		
50.00	235.86	7.51		
y2(x)=	10.2729	527417		
SHUTTLE	RAD EXAC	T F	UNC	

So bedeutet der unterlegte Werte 10.27, dass die Produktionssteigerung von 20 auf 25 Einheiten 10.27 zusätzliche Geldeinheiten nötig machte. Im Bereich um 40 Produktionseinheiten scheint die Kostenzunahme am langsamsten zu sein.

Um eine genauere Aussage zu machen, definieren Sie als y3(x) eine Funktion für die Kosten der jeweils nächsten Produktionseinheit. Diese Kosten werden in der Betriebswirtschaftslehre als Grenzkosten bezeichnet. Ändern Sie im [TblSet]den Startwert auf 35 und die Schrittweite auf 1. Es ist auch sinnvoll, die Anzahl der angezeigten Dezimalstellen etwas zu erhöhen.

F17700 F2★ F3 F4 F5★ F6★ S2 ★ ZoomEdit ✓ AllStyle Street	Setup Set (Header Del Posting Post
Plot 5: Plot 4:	x y1 y2 y3 35.0000 214.6735 7.3690 1.3882 36.0000 216.0617 7.2104 1.3709
Plot 3: Plot 2: Plot 1:	37.0000 217.4326 7.0758 1.3583 38.0000 218.7909 6.9651 1.3506 39.0000 220.1415 6.8784 1.3476
<pre>vg1=r.5002134002174E 4*X + .0545422755 vg2=gkos(x) - gkos(x - 5) vg3=gkos(x + 1) - gkos(x) u4=</pre>	40.0000 221.4892 6.8157 1.3495 41.0000 222.8386 6.7769 1.3561 42.0000 224.1947 6.7621 1.3675
	93(x)=1.34763383838

Die Tabelle zeigt, dass die Zunahme beim Übergang von der 39. zur 40. Produktionseinheit minimal ist. Dort wachsen die Produktionskosten am langsamsten, die Grenzkosten haben ihr Minimum. Die Funktionen $y_2(x)$ und $y_3(x)$ lassen sich ins Grafik-Fenster übernehmen.

Den Übergang von abnehmenden Kostenzuwächsen zu wieder steigenden Kostenzuwächsen nennt man Kostenkehre. Analytisch ist das der so genannte "Wendepunkt" der Kostenkurve. Mit einführenden Kenntnissen der Differentialrechnung kann man diesen Wendepunkt (engl. Inflection Point) durch Nullsetzen der 2.Ableitung finden.

Suchen Sie mit dem TI-92 diesen Wendepunkt vorerst ohne Differenzieren. Folgen Sie der nächsten TI-92 Sequenz.

Mit Lower Bound and Upper Bound werden Sie nach den Grenzen gefragt innerhalb welcher nach einem Wendepunkt gesucht werden soll. Geben zuerst eine Zahl deutlich unter 40 und dann eine zweite Zahl deutlich über 40 an.

Die exakte Lösung lautet: Die Kostenkehre liegt bei 39.6 Produktionseinheiten. Beachten Sie, dass demnach die Kostenfunktion dort ihren Wendepunkt aufweist, wo die Grenzkostenkurve einen Extremwert hat.

Löschen Sie $y_2(x)$ und $y_3(x)$ im [Y=]-Fenster.

Ermitteln Sie ein Modell für die Durchschnittskosten (=Kosten/Stück).

Interpretieren Sie den Verlauf der Durchschnittskostenfunktion.

Ergänzen Sie die Tabelle der Gesamtkosten um die Durchschnittskosten.

Wo sind die Durchschnittskosten minimal? (Arbeiten Sie numerisch und grafisch, bei Kenntnis der Differentialrechnung auch analytisch).

Wie verhalten sich die Durchschnittskosten, wenn die Produktionsmenge immer größer wird?

Wenn Sie die Gesamtkosten gkos(x) durch die Produktionsmenge *x* dividieren, dann erhalten Sie die jeweiligen Kosten/Stück (= Durchschnittskosten). Tun Sie das gleich im [Y=]-Fenster und wechseln Sie anschließend zur Grafik. (y1(x) entspricht gkos(x)!!). Versuchen Sie den Kurvenverlauf zu erklären!

Da die Durchschnittskosten nicht ganz zur Skalierung der Gesamtkosten passen - die Kosten/Stück sind doch deutlich niedriger - können Sie entweder die [WINDOW]-Werte anpassen - damit verlieren Sie vielleicht aber der Überblick und Zusammenhang - oder Sie multiplizieren ganz einfach die Durchschnittskosten mit einem geeigneten Wert. Die qualitative Aussage - wo sind die Durchschnittskosten am kleinsten? - bleibt davon unberührt. Die nächsten Bilder zeigen beide Alternativen.

© Wie wirkt sich eine Multiplikation einer Funktion mit einer Zahl generell aus?

Die minimalen Durchschnittskosten werden bei ca.73.2 Produktionseinheiten angenommen und betragen dort ≈ 4.05 .

Die entsprechende Menge nennt man das **Betriebsoptimum**.

Im nächsten Bild wäre der Funktionswert durch 50 zu dividieren um die Überhöhung wieder rückgängig zu machen.

© Bestätigen Sie numerisch mit der Tabelle [TABLE] die grafische Erkenntnis.

Die exakte Suche nach dem Extremwert bestätigt sie schließlich.

F17700 F2 ▼∰Seti	up ြေး ဲ့ He	ader Dal	Powlin [®] P		$\stackrel{(170)}{\leftarrow}$	f2 ▼ Algebr	a Calc	0ther	PrgmI0	F6 Clear a	a-z)
×	y1	y2			• y1(>	<) → gko:	s(x)				Done
73.00000 73.10000 73.20000	295.6701 296.0727 296.4769	4.050275 4.050242 4.050231			■ zero	$\int \frac{d^2}{dx^2}$	(gkos	(x)), x]		(39	.62)
73.30000 73.40000 73.50000	296.8827 297.2901 297.6992	4.050241 4.050274 4.050329			■ zero	$\int \frac{d}{d \times (-d)}$	gkos(> ×	<u>○</u>], x]		(73	.20)
73.60000	298.1098 298.5221	4.050405			= gko	<u>s(x)</u> x	= 73.2	2			4.05
92(x)=	4.05023	8060330	07	1	gkos	(x)/	xlx='	73.20)		
SHUTTLE	RAD APPR	0X F	UNC		SHUTTLE		RAD EXA	CT	FUNC 5	/10	

© Untersuchen Sie das Verhalten der Durchschnittskosten für "große" Produktionsmengen.

Algebra Calc Other PromI	0 Clear a-z
• zeros $\left(\frac{d}{d\times}\left(\frac{gkos(x)}{x}\right), x\right)$	(73.20)
$\frac{gkos(x)}{x} x = 73.2$	4.05
■ expand(<u>gkos(x)</u>)	
7.99e-4·× ² 09·×+·	117.92 × + 5.11
7.99E ⁻ 4*x^209*x+5.1	.1→y3(x)
SHUTTLE RAD APPROX FUNC	5/10

Dazu lassen Sie gkos(x)/x mit expand(.) ausdividieren und überlegen, dass für immer größere Werte für x der Bruch $\frac{117.92}{x}$ immer kleiner und damit unwesentlicher wird.

Daher wird nur mehr der ganze Teil wichtig sein. Dementsprechend definieren Sie als $y_3(x)$ die Näherungskurve für die Durchschnittskosten für große Produktionsmengen x und stellen diese mit geeigneten Achsen dar:

© Ab welcher Menge scheint die Näherungskurve wirklich eine passable Näherung zu sein?

Suchen Sie den Punkt auf der Gesamtkostenkurve, der zum Betriebsoptimum gehört.

Zeichnen Sie die Tangente in diesem Punkt an die Kurve. Hat die Tangente eine auffällige Lage?

Wählen Sie eine beliebige andere Kostenfunktion und bestimmen Sie nochmals ihre Tangente im Betriebsoptimum.

Können Sie eine Übereinstimmung bemerken?

Ist das ein Zufall? Versuchen Sie den allgemeinen Beweis! (Differentialrechnung).

□ Wählen Sie F5 A: Tangent und geben Sie den Wert 73.20 ein.

Beachten Sie die "besondere" Lage der Tangente.

Service Sie dieselbe Problemstellung mit einer beliebigen anderen Kostenfunktion.

Nehmen Sie z.B.
$$gkos(x) = \frac{e^{0.1x}}{10} + 5$$
.

Der Beweis dafür, dass die Tangente immer durch den Koordinatenursprung geht, ist mit grundlegenden Kenntnissen der Differentialrechung ganz einfach.

= 0

Setzen Sie die erste Ableitung von
$$\frac{k(x)}{x}$$

Lösen Sie das Ergebnis nach k'(x) =
$$\frac{d}{dx}$$
 k(x) auf.

Das ist der Anstieg der Tangente an die Kostenfunktion. Und der ist in diesem Punkt genau der Quotient aus Funktionswert und Argument.

Fire Rigebra Calc Other PromIC Clear a-z...
• Zeros(ys(x), x)
•
$$\frac{d}{dx}\left(\frac{k(x)}{x}\right) = 0$$

• $\frac{d}{dx}\left(\frac{k(x)}{x}\right) = 0$
• $\frac{d}{dx}\left(\frac{k(x)}{x}\right) = 0$
• $\frac{d}{dx}\left(k(x)\right) - \frac{k(x)}{x^2} = 0.00$
• $\frac{d}{dx}\left(k(x)\right) \cdot x - k(x) = 0.00$

Suchen Sie ein Modell für die Nachfragefunktion p = p(x). Vergleichen Sie dazu die Qualitäten von linearer und quadratischer Regression und bleiben Sie bei der besser geeigneten. Schätzen Sie mit Hilfe des Modells den "Höchstpreis" - p(x = 0) - und die "Sättigungsmenge" - x(p = 0).

Die Erlösfunktion Erl(x) ergibt sich als Erl(x) = x * p(x). Definieren Sie die Erlösfunktion. Suchen Sie jene Menge, die den maximalen Erlös verspricht, grafisch, numerisch und wenn möglich auch analytisch.

Die nächsten Bilder sprechen für sich.

Erzeugen Sie zuerst das Streudiagramm (= Scatter Plot) für die Daten der Nachfragefunktion. Dann ermitteln Sie über E5 Cal c mit Li nReg, bzw. QuadReg die lineare, bzw. quadratische Näherungskurve.

Der Regressionskoeffizient spricht eindeutig für die quadratische Regression. Sie können auch im Streudiagramm den leichten Bogen in der Anordnung der Datenpunkte erkennen.

Die Nachfragefunktion lautet demnach mit ausreichend genau:

 $p(x) = 0.0029x^2 - 0.51x + 22.9.$

Mit F3 Trace finden Sie leicht jenen Preis, der alle potentiellen Käufer abschreckt. Da der Preis zu hoch ist, will niemand kaufen. Der **Höchstpreis** ist 22.90. Diesen Wert können Sie aber sicher aus der Funktionsgleichung der Nachfragefunktion ablesen.

Selbst wenn das Produkt verschenkt wird, kann nicht mehr am Markt abgesetzt werden, als die **Sättigungsmenge**.

© Suchen Sie die erste Nullstelle der Nachfragefunktion.

Sie liegt bei ca. 90 Produktionseinheiten. Versuchen Sie, den Schnittpunkt mit der x-Achse sowohl im [HOME]-Screen rechnerisch als auch über **F5** 2: Zero im [GRAPH]-Screen zu ermitteln!

Ja, die Parabel hat wirklich keine Nullstelle!! Damit wird aber der Modellcharakter dieser Behandlung nur unterstrichen. Es gibt nicht "die" Lösung. Die Aussage, dass die gesuchte Menge bei ca. 90 Mengeneinheiten liegt, ist mehr als genug.

Der Erlös erl(x) entsteht aus dem Produkt von verkaufter Menge x mit dem dafür erzielbaren Preis p(x).

Legen Sie die Erlösfunktion unter dem Namen y4(x) im Funktioneneditor fest.

F1 THO F2 F3 F3 F4 F5 F6 → ← Algebra Calc Other PrgmIO Clear a-z	[1] ▼	raCalcOthe	er PrgmIOC1	ear a-z
■Define erl(x)=y3(x)·x Done	.0029	$\cdot \times \cdot (\times^2 - 17)$	9.0000·×+8	3015.0000)
■erl(x)→y4(x) Done	<pre>expand(.0</pre>	02857142857	71428 · × · (× ²	– 179. ·×
■erl(x)		.0029·× ³ -	.5114·× ² +	22.9000·×
.0029·×·(× ² - 179.0000·× + 8015.0000)	$= \operatorname{zeros}\left(\frac{d}{d\times t}\right)$	(er1(x)),x		
■ expand(.0028571428571428·x·(x ² - 179.·×)	(***	,	(29.8599	89.4735)
.0029·× ³ 5114·× ⁴ + 22.9000·×	■er1(29.86)		303.8622
expand(ans(1))	er1<29.8	6)		
SHUTTLE RAD AUTO FUNC 4/10	SHUTTLE	RAD AUTO	FUNC 6/10	1

Sie sehen hier die analytische Lösung mittels Differentialrechung.

© Bestätigen Sie diese Lösung grafisch und/oder numerisch mit Hilfe einer Tabelle.

Stellen Sie in einem gemeinsamen Koordinatensystem Kosten- und Erlösfunktion dar. Beschreiben Sie den Begriff "Gewinnzone". Ermitteln Sie die Gewinnzone grafisch und numerisch.

Definieren Sie die Gewinnfunktion G(x) und zeichnen Sie auch deren Graph ins bestehende Koordinatensystem. Welche Menge verspricht den maximalen Gewinn?

Suchen Sie die gewinnmaximale Menge grafisch, numerisch und analytisch.

Die "Gewinnzone" ist offensichtlich jener Bereich für die Produktionsmenge x, in dem der Erlös nicht unter den Kosten liegt. Den linken Rand nennt man Gewinnschwelle oder Break-Even-Punkt, den rechten Gewinngrenze.

□ Bestimmen Sie die Schnittpunkte von Kosten- und Erlösfunktion bequem über das "Alleskönner-Menü" F5 5: Intersection.

FUNC 9/10

□ Fügen Sie die Funktionsbeschreibungen über die Option F7 7: Text ein.

Führen Sie den Cursor zuerst an die gewünschte Stelle, dann F7 7: Text und schreiben Sie munter drauf los.

Sie sehen hier nur die Ermittlung der exakten Lösung für die gewinnmaximale Absatzmenge mit $x_{max} = 26.61$ Mengeneinheiten.

Suchen Sie mindestens einen Weg zur Lösung, ohne die Differentialrechnung zu verwenden. Es gibt ja auch hier mehrere Möglichkeiten.

Es müsste jetzt noch der Preis ermittelt werden, den man am Markt verlangen - oder erzielen - muss, um diese Menge nach dem vorliegenden Modell überhaupt absetzen zu können.

Dieser Preis ergibt sich aus der Nachfragefunktion y3(26.61) = 11.31.

Second Second

Wann wird der Gewinn möglichst groß werden? Wenn der Abstand zwischen Erlös und Kosten möglichst groß ist. Und wo ist das nun? Betrachten Sie genau das Bild! Mit der Differentialrechung führt das zu einer eleganten Formulierung für die Suche nach der gewinnmaximalen Absatzmenge.

Die Tangenten an Kosten und Erlöskurve sind an dieser Stelle parallel, d.h., dass die momentanen Änderungsraten für die Kosten und den Erlös an dieser Stelle übereinstimmen müssen. Man formuliert diesen Zusammenhang so: **Grenzosten = Grenzerlös.**

□ Heben Sie schließlich die Gewinnzone durch eine Schraffur deutlich hervor.

Und auch hier hilft das Menü **F5** C: Shade. Folgen Sie einfach den Anweisungen. Die senkrechten Geraden können über **F7** 6: Verti cal beschränkt auf die Zeichengenauigkeit = Bildschirmauflösung eingetragen werden.

Abschließend soll aber betont werden, dass man so nur versucht, die Marktmechanismen durch ein mathematisches Modell zu beschreiben. Die Ergebnisse lassen sich sicher nicht 1:1 in die Realität übertragen. Das Modell kann aber dazu beitragen, manche Zusammenhänge besser zu verstehen.

Auf der Diskette findet sich die Text-Datei Kosttxt. 92t, die für einen Teil dieser Anwendung ein Script bereitstellt.

Arbeiten mit dem Geometrie-Werkzeug

Aus eigener Erfahrung und von vielen Fortbildungsveranstaltungen her weiß ich, dass gerade das Geometrie-Werkzeug am schwierigsten zu handhaben ist. Außerdem ist es nicht komplett mit den übrigen Anwendungen des *TI*-92 vernetzt. Aber gerade die interaktive Geometrie lässt sehr reizvolle und sinnvolle Untersuchungen und Entdeckungen zu. Hier soll exemplarisch der Einsatz dieses Werkzeugs Schritt für Schritt an der interaktiven Grafik von Problem 1 durchgeführt werden. Hat man einmal die "Philosophie" dieser abgespeckten Cabri-Geometre Implementierung erfasst, dann ist das Arbeiten gar nicht mehr schwierig.

Es muss aber betont werden, dass die vorgeführte Arbeitsweise sicher nicht die einzig mögliche ist. Versierte Benutzer werden den einen oder anderen Schritt eleganter durchführen.

Sie erzeugen eine neue Variable box vom Typ Fi gure im passenden Verzeichnis. (Falls Sie die originale box im Folder behalten wollen, dann benennen Sie diese um in boxol d.

y=ax+b→ (x-a)2+

-a)2+(y-b)2=r3

(ESC=CANCEL)

Line Equations....

Circle Equations..

(Enter=SAVE)

Mit • F legen Sie das nebenstehende Format fest:

Der Raster (Grid) dient vorerst als Orientierungshilfe und kann nach der Konstruktion wieder weggeschaltet werden.

Halten Sie sich bitte die Abbildung auf Seite 4 vor Augen. Diese soll jetzt entstehen und die Animation ermöglichen. Beginnen Sie mit der Strecke, auf der sich der Punkt X bewegt. Er beschreibt gemeinsam mit dem rechten Endpunkt der Strecke die Seitenlänge der ausgeschnittenen Quadrate F5 5: Segment, dann führen Sie mit dem Cursorpad den Zeichenstift nach links oben bis zum Rasterpunkt, ENTER dann nach rechts bis zum Rasterpunkt unter F5 / F6 ENTER ESC

_		_	_		_	_		_	_	_		_	_	_		_
(F1 ▼	k	₹2 ₹	~	- Jes	\odot	Ť₽4 ▼.	F	Ì₽.		Ĭ Ţ	~	¥ 	HiDE Show	ĬF∎ Ţ	1	
•		Ø	ON	THIS	POIN	r OF	THE	GRID	·	·	·		•	÷	·	·
•	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·
·	·	·	•	·	·	•	·	·	•	·	·	·	·	•	·	÷
•	·	·		·			·	·	•	·	·	•	·		•	÷
•	•	·	•	•	•		·	·	•	·	·	•	·		•	1
	•	•	•	•	•		•	·	•	•	·	•	•	•	·	·
<มา	TTI 6	·	•	•	DEG	өшт	•	•	•		INC	•	•		•	·

f1 ▼	Þ	752	~	j.	Ċ)[;	\mathcal{L}	-) ▼) F	<u>س</u>	- - -	'HiDI Shov		Ŧ	2
		-								Ø	IN T	HIS P	DINT	OF	THE	SRID
	·													÷		
											·					
			·		·			·	·							
SHU	TTL	E			DEG	AUT	0			F	INC					

Grundsätzlich beenden Sie die Arbeit mit einem Werkzeug mit ESC und kehren in die Ausgangslage zurück, die mit F1 den Pointer aktiviert.

(F1 •	k	¥72 ▼	•) •	$\overline{\odot}$)[÷	ł) ₹		ÌF6	~	ļ.	HiDE Show	F	70	٦
•		•					<u>@</u> 0	N TH	IIS SE	EGMI	ENT					·
								·								
SHU	TTL	Ε			DEG	AUT	0			FL	INC					_

Mit F2 1: Poi nt markieren Sie einen Punkt auf der Strecke und verbinden dieses Objekt gleichzeitig unauslöschlich mit dieser Strecke.

ENTER fixiert den Punkt und ESC schließt diese Tätigkeit ab. Wenn der Pointer aktiv ist, können Sie den Cursor zum Punkt führen, mit dem "Händchen" regreifen und mit , bzw. () auf

dem Segment verschieben. Die Bewegung des Punktes auf der Strecke läuft aber vollautomatisch ab, wenn Sie die [F7] 3: Ani mati on aufrufen,

Ţ	k) ₽	•	Ì. ₹	$\overline{\odot}$)[7	7	-) - -	-	ļ	~	Ϋ́	HiDE Show) F	<u>r</u>]
·		-		_	_	_	K.i	HIS	POIN	- -						
•	·		·	·	·	·				·	·	·		·		·
•	·	·		·	·	·				·		·		·		·
•	·	·	·	·	·	·				·		·		·		·
•	·	·	·	·	·	·	·	·	·	·	·	·	•	·	·	·
•	·	•	·	·	·	·	·	·	•	·	·	·	•	·	·	·
SHU	TTL	E			DEG	i AUT	0			FL	INC					

(F1 ▼	k	¥ F2	•) ₹	C)[Y	-) ▼	-	ļ	~	Ì.	₩ ³) T	₽	٦
·		•									<u>.</u> @	i.		·		·
ŀ			·		·		·		·	·		·		·		·
ŀ	·	·	·		·		·	·		·		·	·	·		·
•	•				·	•	·				•			·		·
												·				·
•																·
SHU	TTLE			a	DEG	AUT	0			FL	INC					_

FT.	k) F2 •	•	<u>₹</u>	$\overline{\odot}$)[7	\mathcal{F}		-	ļ	<u>س</u>	Ţ	HiDE Show	j,	7	٦
·	•	•				_	<u>9</u>			•					•	•
ŀ	·	·	·		·		·		·			·	·	·		·
ŀ	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·
ŀ	·	·	·	·	·	·	·	·	·	·	·	·	•	·	·	·
ŀ	·	·	·	·	·	·	·	·	·	·	·	·	·	·	•	·
ŀ	·	·	·	·	·	•	·	·	·	·	·	·	·	·	·	·
·	·	·	·	·	·	•	·	·	·	·	·	·	·	·	·	•
SHL	ITTL	E		a	DEG	AUT	0			FI	INC					

Ergreifen Sie wieder den Punkt mit S, halten Sie ihn mit dem linken Daumen fest und drücken Sie gleichzeitig mit dem rechten Daumen (). Damit "ziehen" Sie eine "Feder" auf. Lassen Sie beide Tasten los, der Punkt sollte auf der Strecke hin und her wandern.

Als nächstes wird das Rechteck im Ausmaß von 9×5 Rastereinheiten konstruiert. Wählen Sie F3 4: Pol ygon, und bewegen Sie den Zeichenstift zu jener Stelle, die die erste Ecke des Rechtecks werden soll, bestätigen Sie mit ENTER und ziehen Sie zur nächsten Ecke, ENTER, ... bis Sie das Polygon mit dem Ausgangspunkt wieder schließen. Anschließend wird das Rechteck strichliert dargestellt.

 $\boxed{\text{ESC}}$. Der beweglichen Punkt auf dem Segment soll mit "X" bezeichnet werden. Das kann entweder unmittelbar nach seiner Erzeugung oder später mit $\boxed{\text{F7}}$ 4: Label erfolgen. Führen Sie den Cursor zum Punkt, $\boxed{\text{ENTER}}$, und geben Sie $\boxed{\texttt{t}}$ \boxed{X} ein.

(F1 •	×	¥72	•) •	М	Ţ	Z	-) ₹		ÌF6 ▼	~	ŀ	<u>(</u> A)	<u>]</u>	7	<u></u>
·	·	•						r -'	THIS P	יאוַסי	Γ.					·
•	₽ ÷ :									•		•	·		•	•
•	:	·								+						•
	Ì.									i.						
	į.									÷						
	i.									ł						
	.									-						
SHU	TTL	Ε			DEG	AUT	0			FL	INC					_

Mit ESC "hängen Sie dieses Werkzeug wieder an den Nagel".

Nun wird das Netz der Schachtel gezeichnet. Der Abstand von X zum rechten Endpunkt der Strecke wird zur Seitenlänge des ausgeschnittenen Quadrats. Es werden Parallele zu den Rechteckseiten in diesem Abstand gezeichnet. Dazu muss vorerst die Länge der Quadratseite gemessen werden. Dieser Abstand wird dann auf die Seiten des Rechtecks von den Ecken aus übertragen: F6 1: Di stance and Length.

(F1 ▼	Þ	¥72	•	רק ער	Ľ	Ĵ	2) ₹	~	Ì.	A)	̶ ₹	7	2
•	•	•	_			, Pf	RALI	LELI	io fi	IS SI	DË Ö	F тн	E PO	LYGI	IN	•
	-									1						
·	ļ	•	•	•	•	•	•	•	•	ţ	•	•	•	•	•	
:	ł	÷	:	:	:	:	:	:	:	ł.	:	÷	:	:	:	
	i.															
SHU	TTL	E			DEG	AUT	0			FU	NC					

Ţ	Þ,	F2 ▼	•	(F3* ▼	2	(F4 T	\mathbb{P}	ſ		₩ ₩	[₽7 ▼	<u>A</u> Ì	F	₽	٦
•	•	•							X 9.	31mm	•	•	•		•
:				 •				1		1	:	:	:	:	:
·	÷	•		•		•	•			<u>+</u> .	•	•	•		·
<u> </u>	╎─							·		∲ <u></u> ``					
Ċ	<u>!</u>		ŀ 	· 	· 	· 					:		:	÷	:
SHUT	TLE		<u> </u>	_	DEG	AUT	0			FUNC	·		·		_

_			_	_		_		_			_				_
(FI	k] F 2 ₹ /	ł	j.	M	j.	2	Ì.	Ì	F6.m~	F	A)	Ţ	7	
•		•	F						Х9.	31mm	•	•	•	·	•
	1	·	F	THIS	LIN	е —		-:		• ·	:	:	:	:	
	+														
•	1									Y I · I					
SHI			1-		DEG	ellit	 n	-		FUNC	•	•	•	•	•

(F1 ▼	Þ	12	ł) ₹	M	ļ	1	Ì,	5	F6.m. ▼ ⊾	177	[A]) Fi	7	
·	•	•						-	X 9.	31mm	·	•	·	·	•
·	ŧ.		• -					-1		¶ '	•	•	·	·	·
·	ł	·			т́ні	S ĹIN	IE.	•		¦ .	·	•	·	·	·
	ł		[
	1									γ i ·					
	.		-					-		• ·					•

Zeichnen Sie alle notwendigen Geraden; ESC

Dann werden alle noch fehlenden Schnittpunkte bestimmt: F2 3: Intersection Point.

Zwei zu schneidende Gerade werden angesprochen, nach dem <u>ENTER</u> für die zweite Gerade erscheint der Schnittpunkt.

(F1 ▼	Þ	¥2 ▼ 1	ł] ₹	Ы) T	1	ľ		F6.m ▼ ⊾	Ì.	(A)) Fi	$\overline{}$	
·	·	•	ŀ					-	X 9.	31mm	·	•	·	·	•
:	-		• . .					-:			:	:	:	:	:
·	÷	•	<u>.</u>	×	· ·	·		•		<u>.</u>	•	•	•	•	
	╎		<u> </u>							∲ <u>··</u>					÷
			-+					_		i • •					
SHU	TTLE				DEG	AUT	0			FUNC					

(F1 	₩	£1;ª	<u>7</u> f	1	Š	F6.m.>	¥77	AĬ) FB ₹:	20	٦
	· •				х 9.	31mm	·	•	•	•	·
•		IS LINE					:	•	:	•	•
	, . , .										÷
						· ·	•	•	•	•	•
SHUT	TLE	L	DEG AUT	0		FUNC					-

Die Geraden werden "versteckt": F7 1: Hi de/Show. Alle zu versteckenden Objekte werden angesprochen und mit ENTER bestätigt (erscheinen punktiert). ESC beendet diese Aktivität.

_		_		_		_		_				_		_		_
Ŧ	Ņ	Ĵ₫	A	Ĵ₽	Ξ	¶₽	_	-15	1	.)₽	<u>س</u>	Ŷ	HiDE Show)F	7	2
		-		-		-		Ż	9	-3	1 mm	·	•	•	•	·
•	۲		-							Ť		· .	·	·	·	
·	ł	·	·	·	·	·	·	·	·	ł	·	·	·	·	·	•
•	t	·	4	·	·	·	·	2	·	1	·	·	·	·	·	•
•	ŧ	·	2		·	·	·	•	·	÷	·	·	·	·	·	•
•	į.	·	·		·			·	·	÷		·	·	·	·	•
	•															
SHU	TTL	E			DEG	AUT	0			FL	INC					

Das Rechteck für den Boden wird ebenfalls als Polygon konstruiert. Außerdem soll es dick und strichliert dargestellt erscheinen: F3 4: Pol ygon (siehe Seite 35).

Mit $\boxed{F6}$ 1: Di stance and Length messen Sie in bereits gewohnter Manier die Seiten des Ausgangsrechtecks und verziehen dann mit $\boxed{F1}$, $\boxed{C1}$ und O die Maßzahlen an geeignete Positionen.

Jetzt fehlt noch ein interessanter Teil. Es soll möglich sein, simultan mit der Veränderung der Form der Schachtel nicht nur die Länge der Quadratseite, sondern auch das Volumen der dabei entstehenden Schachtel zu beobachten und diese Wertepaare in eine geeignete Tabelle zu übertragen.

F6 6: Cal cul ate \bigcirc solange bis die Quadratseitenlänge invertiert dargestellt erscheint. Nach dem ersten **ENTER** erscheint das Maß eingerahmt, über ihm und in der Eingabezeile die Variable a, die das System intern für diese Größe vergeben hat. Da a vorerst bereits Resultat der Rechnung ist, wird mit einem weiteren **ENTER** die "Rechnung" abgeschlossen. Das Resultat erscheint unter R: links unten und kann mit dem Händchen wieder positioniert werden.

Berechnen Sie das Volumen: F6 6: Cal cul ate. Sie müssen wieder die kurze Strecke aktivieren, mit ENTER estätigen und schreiben dann die Volumsformel fertig hin. Verziehen Sie das Resultat an eine geeignete Stelle. (Es wäre auch möglich, Länge und Breite der Schachtel zu messen und dann das Volumen als Länge × Breite × Höhe zu erzeugen.)

F1 K F2	<u> 1,7,10,10</u>	
· · •	45.00mm	×4.48mm
		┓- ! · · · · · ·
R 2,590	. 11	╺╊┥╴╴╴╴╴
		25.00mm
	· · · · · ·	R: 4.48
···		
SHUTTLE	DEG AUTO	FUNC

Das erste Resultat soll mit X: und das zweite mit V: bezeichnet werden.

F7 6: Numerical Edit

Steuern Sie eines der beiden Resultate an, bestätigen Sie mit ENTER und Sie sehen die Schreibmarke | im Kasten vor dem R. Mit • • • kön-

nen Sie im Text Zeichen um Zeichen nach rechts rücken. Rücken Sie hinter das R, löschen Sie das Zeichen mit \frown , und schreiben Sie \uparrow \bigtriangledown .

Auf dieselbe Weise machen Sie aus dem R in der ersten Zeile ein x.

Schließlich verstecken Sie noch das Maß der kurzen Strecke. F7 1: Hi de/Show: die Zahl ansteuern, ENTER , ESC .

Als letztes muss in die Konstruktion eingebracht werden, welche Daten und in welcher Reihenfolge diese in die Systemdatentabelle SySdata übertragen werden sollen. Wählen Sie F6 7: Collect Data 2:. Aktivieren Sie zuerst die Größe x, bestätigen Sie mit ENTER, anschließend die Größe V und schließen Sie mit ESC. Die zu übertragenden Größen sollten in einem strichlierten Kästchen erscheinen.

Mit • D (dem Tastaturkürzel für Store Data) übertragen Sie Ihr erstes Datenpaar in das Datenblatt sysdata.

Überprüfen Sie gleich, ob das auch tatsächlich gelungen ist.

Sie können das auch direkt mit F8 B: Data VI ew erreichen. Allerdings wird dabei der Schirm geteilt. Mit F8 C: CI ear Data VI ew kehren Sie zum vollen Geometrieschirm zurück.

Damit haben Sie Ihr erstes interaktives Optimierungsmodell erstellt.

Anregungen zu weiteren Problemstellungen

Sie finden in der Folge eine Auswahl von einigen "klassischen" Extremwertaufgaben aus der Schulliteratur. Die zugehörigen *.92A-files können Sie von der beiliegenden Diskette auf Ihren *TI*-92 übertragen.

Mit • D werden die numerischen Werte in der Datentabelle Sysdata abgelegt. Sie können dann in vielfältiger Form weiterverwendet werden. Vielfach ergeben sich neben der vorgelegten Optimierungsaufgabe weitere Fragestellungen.

Es ist von großem Reiz, diese Modelle selbst zu erstellen. Ich kann nur hoffen, Sie dazu anzuregen, Ihre "Lieblingsaufgabe" in ein Modell zu übertragen. Damit können Sie den Rahmen der traditionellen - meist nur analytischen - Sichtweise der Probleme sprengen und im Sinne von Bert K Waits, den ich hier sehr gerne und dankbar zitiere, auch einen numerischen und grafischen Zugang schaffen.

Laden Sie die Objekte über $\boxed{\text{APPS}}$ 8: Geometry, 2: Open, und öffnen Sie anschließend das Feld Vari abl e mit \bigcirc .

bsp1.92a

Gegeben ist ein Quadrat (a = 3); ihm ist ein gleichschenkliges Dreieck mit seinem Scheitel in einem Eckpunkt des Quadrats einzuschreiben.

Welches derartige Dreieck hat

- a) den größten Umfang,
- b) den größten Flächeninhalt?

bsp2. 92a

Ein 3m hohes Bild hängt an der Wand eines Saales; sein unterer Rand ist 2,5m über dem Fußboden.

Wie weit muss sich ein Beschauer, dessen Auge sich 1,5m über dem Boden befindet, von der Wand entfernen, um das Bild unter einem möglichst großen Sehwinkel betrachten zu können? bsp3.92a

Eine Strecke wird so zwischen den Koordinatenachsen eingespannt, dass ihre Abschnitte auf den Achsen 6, bzw. 2,5 Längeneinheiten betragen. Auf dieser Strecke ist ein Punkt P so zu positionieren, dass

a) die Summe der Abstände zum Ursprung und zu den Achsen minimal ist,

b) die Summe der Quadrate dieser Abstände minimal ist,

c) die Summe der Kuben dieser Abstände minimal ist.

bsp4.92a

F	Þ] ₹	•	¥ ₹	$\overline{\odot}$)[÷	\mathcal{F}	F5	Ţ	6 cm	শ	7	97	7	5
•	•		•	•	÷	-ز_		₹.						•	·
·	·	÷	Ż	~~		·	•	<u>.</u>	•	•	×	= .	-2.	6Ż	•
•		Ŷ	2	_	_				05,		d.	= '	1.7	1ċm	×
						÷		Į.							
								[~~			• .				
•	·	·	·	·	·	·	•	ŀ	•	•	•	•	•	•	•
SHL	ITTL	E			RAD	AUT	0		F	UN O					

Eine nach rechts offene Parabel mit waagrechter Achse mit dem Parameter p = 0,25 hat ihren Brennpunkt in F/-2,5/0,5).

Welche(r) Parabelpunkt(e) hat(haben) von P den kleinsten Abstand?

(Der Punkt X lässt sich auf der Parabel bewegen!)

bsp5.92a

Einem Kreissektor mit dem Öffnungswinkel 60° soll das größte Rechteck eingeschrieben werden.

- a) Welches Rechteck ist das flächengrößte?
- b) Welches Rechteck hat den größten Umfang?

bsp6.92a

Gegeben sind die beiden Punkte A(-3/0) und B(-1/0). Gesucht ist jener Kreis durch A und B, der von einem dritten Punkt C(4/-1) unter dem kleinsten Winkel gesehen wird.

bsp7.92a

Eine Ellipse in Ursprungslage (2a = 6, 2b = 3)wird durch 2 Parallele zur x-Achse in gleichem Abstand geschnitten. Die 4 Schnittpunkte bilden gemeinsam mit den beiden Hauptscheiteln ein Sechseck.

In welchem Abstand sind die Parallelen zu legen, dass

a) der Umfang des entstehenden Sechsecks maximal wird,

- b) der Flächeninhalt des entstehenden Sechsecks maximal wird,
- c) bei Drehung des Sechsecks um die x-Achse ein Körper größten Inhalts entsteht?
- (P läßt sich auf der Ellipse bewegen!)

a) größten Umfang und

bsp9. 92a

Welche aller möglichen Pyramiden hat

- a) größtes Volumen,
- b) größte Oberfläche,
- c) größte Mantelfläche,
- d) größte Gesamtlänge aller Pyramidenkanten?

bsp8.92a

Gegeben ist das Viereck ABCD mit A(0/0), B(5/0), C(5.5/2.5), D(-1,2.5). T ist ein beliebiger Punkt auf AB. Auf AD ergibt sich der Punkt P mit AP = AT und auf BD der Punkt Q mit BQ = BT.

Für welche Lage von T hat das entstehende Viereck ABQP

b) größten Inhalt?

Aus einer kreisförmigen Blechscheibe mit dem Radius r = 20 ist laut nebenstehendem Bild das Netz einer quadratischen Pyramide herzustellen.

(a = Grundkante, H = Körperhöhe, h = Seitenflächenhöhe; X kann vertikal verschoben werden).

bsp10.92a

Gegeben ist die Kurvenschar

$$y_a(x) = ax - \frac{1+a^2}{24}x^2$$
 mit $a \ge 0$.

Die Nullstellen und der Scheitel einer Scharkurve sind die Eckpunkte eines Dreiecks. Für welchen Parameter *a* ergibt sich das flächengrößte Dreieck.

Zeige, dass die gleiche Scharparabel mit der x-Achse auch das flächengrößte Parabelsegment bildet.

Zusatzfrage: Auf welcher Kurve liegen die Scheitel aller Parabeln?

bsp11.92a

Dem Kegel mit dem Basisradius R = 8 und der Höhe H = 20 ist ein gerader Kreiszylinder mit einer aufgesetzten Halbkugel einschreiben.

Welche Abmessungen verleihen dem eingeschriebenen Objekt

- a) größtes Volumen,
- b) größte Oberfläche?

bsp12.92a

bsp13.92a

Dem Quadrat mit der Seitenlänge s = 1 ist ein gleichschenkliges Dreieck so zu umschreiben, dass

- a) dieses maximalen Flächeninhalt aufweist,
- b) bei Drehung um seine Höhe der volumsgrößten Kegel erzeugt wird.

Gegeben ist das gleichseitige Dreieck ABC mit s = 3,5. Durch C wird eine Gerade gezogen, die die gegenüberliegende Seite im Punkt P schneidet. Die Parallele zu einer weiteren Dreieckseite durch P schneidet die dritte Seite im Punkt Q. Welches so entstehende Dreieck CPQ hat den maximalen Flächeninhalt?

bsp14.92a

Die nach rechts offene Parabel mit dem Scheitel in (-8/0) geht durch den Punkt (0/6). Die Parabel und die Gerade g: 3x + 2y = 12 begrenzen mit y = 0 in der oberen Halbebene einen Bereich, dem ein achsenparalleles Rechteck eingeschrieben werden kann.

- a) Bestimmen Sie das Rechteck mit dem größten Flächeninhalt.
- b) Bestimmen Sie das Rechteck mit dem größten Umfang.
- c) Für welche Höhe stimmen die Maßzahlen von Umfang und Flächeninhalt überein?

bsp15.92a

Von einem Punkt A soll zu einem Punkt B ein Kanal gegraben werden. Man kommt von A nach B, indem man zuerst 120m geradlinig zu einem Punkt D gelangt, von dort zweigt man in einem rechten Winkel 60m nach B ab.

Auf der Verbindung AD kostet ein Laufmeter ca. 800DM, während die Kosten querfeldein 1700DM/Lfm betragen.

- a) Was kostet die Herstellung der kürzesten Verbindung von A nach B?
- b) Was kostet die Verbindung von A über D nach B?
- c) Was kostet die billigste Verbindung? Wo liegt der Abzweigpunkt?
 Welchen Winkel schließt die Abzweigung mit der Richtung AD ein?

Literaturhinweise

- [1] F. Wallentin, Maturitätsfragen aus der Mathematik, Carl Gerold's Sohn, Wien 1932
- [2] F. Karollus, 500 vollständig gelöste Aufgaben aus der Mathematik, Rohrer, Brünn 1933
- [3] Bedi Büktas, Aufgabensammlung zur höheren Mathematik 1, Diesterweg, 1978
- [4] Mathematische Reifeprüfungsaufgaben I, II, Klett, Stuttgart
- [5] Diverse DERIVE Newsletters Jg 1996 1999, DERIVE User Group, Würmla
- [6] TI-92 Handbuch, Texas Instruments
- [7] Josef Böhm, Sammlung eigener Aufgaben